SfS²(SECURE for Student Success) First Annual Undergraduate Research Symposium

Machine Learning-based Energy Prediction for Workload Management in Datacenters

Matthew Smith, Brandon Ismalej Advisor: Dr. Xunfei Jiang Department of Computer Science California State University, Northridge

September 2024

SfS2 Research Symposium

2

- Introduction
- Techniques/Methodologies
- Data/Observations
- Results
- Conclusions

Introduction

- Data centers consume 1% of world-wide energy, growing
 - Is there a way we can limit the energy consumed by data centers?

Figure 2: Global electricity demand of data centers for 2010-2030 [2].

4

September 2024

Introduction: Load Balancing

• Load balancing: how a network distributes tasks to servers

Figure 3: The load balancing process from client to server [3].

September 2024

Introduction: Virtual Machines and Tasks

- Virtual machines (VMs): portion of hardware dedicated to a task
 - Maximize number of programs running in each server

Figure 4: A single server with 8 GPUs and high number of CPUs and RAM [4].

SfS2 Research Symposium

6

Introduction: Project Objectives

- Part 1: GPU Energy Modeling*
 - Synthesize GPU data that mimics characteristics of real-world workload traces
 - To develop accurate GPU power prediction models to advance the
 - study of thermal-aware workload management
- Part 2: Thermal-Aware Load Balancing
 - Evaluate thermal aware load balancing algorithms in simulations
 - Integrate GPU power prediction models into the simulator

- * No way to model GPU power in simulation by default

September 2024

Part 1: GPU Energy Modeling

- Objectives:
 - Synthesize GPU data that mimics characteristics of real-world workload traces
 - To develop accurate GPU power prediction models to advance the study of thermal-aware workload management

Emulating Real-World GPU Data

- Statistical analysis of 2 real-world workload traces:
 - Alibaba v2020 GPU Cluster Trace
 - SenseTime Helios GPU Cluster Trace
 - Focus:
 - Inter-task delay times ≥ 0 secs.
 - Tasks running sequentially on individual GPUs
- Goal:
 - To extract inter-task delay times of real-world data
 - To shape the design of our experiments and data synthesis

September 2024

Emulating Real-World GPU Data

- Findings from analysis:
 - Distribution of delay times are heavily skewed
 - Most delay times were zero seconds
 - We focused on the 95th percentile to shape our experiments

Designing Experiments based on Analysis

• A set of 14 GPU-intensive benchmarks:

Benchmark Application	Domain	Avg. Power [W]	Avg. GPU Util [%]	GRAM Avg. [GiB]
2D_CONVOLUTION	Image Processing	59.05	98.10	0.60
BERT_QA_PREDICTION	Natural Language Processing	60.73	95.05	1.29
BLACKSCHOLES	Computational Finance	22.86	8.83	0.16
DISTILBERT_TRAINING	Natural Language Processing	57.87	98.62	6.47
EUCLIDEAN_DISTANCE	Mathematical Computation	51.08	99.33	1.64
FFT	Signal Processing	55.19	99.45	4.61
GAN_MNIST_DIGITS	Generative Adversarial Network	60.77	97.96	0.79
IMAGE_CLASSIFIER	Image Classification	23.09	6.74	0.29
K_MEANS	Unsupervised Learning	22.86	17.46	0.41
MATMUL	Matrix Multiplication	27.85	13.06	1.36
MONTE_CARLO_PRICING	Financial Simulation	43.01	98.31	3.48
SEPIA_TRANSFORMATION	Image Processing	23.10	5.94	0.26
SPECTROGRAM_TRANSFORMATION	Audio Processing	23.65	5.18	0.18
SIMPLE_CNN	Image Recognition	42.30	97.21	2.02

Table 1: Domain of GPU Benchmark Applications

September 2024

Designing Experiments based on Analysis

- Designed five distinct experiments to cover a wide range of inter-task delay times, using our benchmarks
 - "No delays" simulates peak usage
 - Short delays simulate high-frequency task switching
 - Longer delays reflect idle periods, like downtime
 - Experiments yielded ~40 hours of data
 - Data was collected second-by-second

CPU	2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz (10 cores)		
Memory	98,304 MB		
Disk	2 * 480 GB		
GPU	NVIDIA Tesla P4 8GB GDDR5		
OS	Ubuntu 22.04.2 LTS		

Table 2: Cluster System Configuration

1110	Delay Times (seconds)	Task Order
Exp 1	No delays	Sequential, reverse, shuffled
Exp 2	0 - 10	shuffled
Exp 3	1 - 20	Sequential, reverse, shuffled
Exp 4	1 - 30	shuffled
Exp 5	300 - 1000	shuffled

Table 3: Experiment Configurations

Preprocessing Synthesized Data

- Features extracted for duration of every task-active and idle period
 - To align with available features of real-world workloads that
- would be implemented in cloud simulator

timestamp	gpu_temp	gpu_power	gpu_GRAM_util	gpu_util	
2024-06-19 21:12:14	36	6.74	0	0	
2024-06-19 21:12:15	36	6.64	0	0	
2024-06-19 21:12:16	36	6.64	0	0	
2024-06-19 21:12:17	36	6.55	0	0	
2024-06-19 21:12:18	36	6.64	0	0	-Start of GPU Task
2024-06-19 21:12:19	35	6.64	0.1220703125	0	
2024-06-19 21:12:20	36	22.71	5.60302734375	1	
2024-06-19 21:12:21	36	54.98	75.47607421875	36	GPU GRAM Avg.
2024-06-19 21:12:22	38	59.76	82.80029296875	96	GPU GRAM Max.
2024-06-19 21:12:23	39	43.94	85.14404296875	100	
2024-06-19 21:12:24	39	65.01	85.14404296875	100	
2024-06-19 21:12:25	40	49.21	85.14404296875	100	- GPU Power Ava
2024-06-19 21:12:26	41	50.96	85.14404296875	100	e er er en en en en er.
2024-06-19 21:12:28	41	65.26	85.14404296875	100	
2024-06-19 21:12:29	42	65.46	85.14404296875	100	- GPU Util Ava
2024-06-19 21:12:30	43	61.72	85.14404296875	100	or o other rang.
2024-06-19 21:12:31	43	60.59	85.14404296875	• 100	
2024-06-19 21:12:32	43	61.27	85.14404296875	100	Dradiction Value
2024-06-19 21:12:33	44	х 🖵	85.14404296875	100	Prediction value

Figure 7: Illustration of Data Preprocessing

GRAM Avg. & Max. [GiB]; Util. Avg. [%]; Power Avg. [W]

September 2024

Modelling GPU Power

• Four machine learning algorithms were utilized

- XGBoost (eXtreme Gradient Boosting)
- CatBoost (Categorical Boosting)
- LightGBM
- LSTM (Long Short-Term Memory)
- Utilized a 60/20/20 split of data for:
 Training/Testing/Validation

Modelling GPU Power

- To predict GPU power consumption:
 - Training input:
 - GPU GRAM Avg. [GiB]
 - GPU GRAM Max. [GiB]
 - GPU Utilization Avg. [%]
 - Training output:
 - GPU Power Avg. [W]

Initial ML model training

CatBoost	LightGBM	XGBoost	LSTM
1.218	1.224	1.284	1.520
	CatBoost 1.218	CatBoost LightGBM 1.218 1.224	CatBoost LightGBM XGBoost 1.218 1.224 1.284

Table 4: RMSE Values of Initial Model Training

 Grid-search hyperparameter tuning performed to improve RMSE

Modelling GPU Power

- Best model XGBoost
 - RMSE = 1.217
 - On average,
 predictions for GPU
 power consumption
 are off by about 1.217
 watts from actual
 measured values

Figure 8: Best XGBoost Model Predicted vs. Actual GPU Power Consumption

Part 2: Thermal-Aware Load Balancing

- Objectives:
 - Evaluate thermal aware load balancing algorithms in simulations
 - Integrate GPU power prediction models into the simulator

Researching Workload Traces

- Investigate workload traces of data centers using GPUs
 - HeliosData, Alibaba Cluster v2020, Alibaba Cluster v2023

Figure 9: An Alibaba data center [5].

Processing the Alibaba 2020 Workload Trace

- Alibaba v2020 (5 GBs)
 - We used 4 files: machine
 - spec, task, instance, and sensor
- Filtered out tasks missing:
 - Planned VM resources
 - Sensor, server information
 - Task duration
- Over 66 days
 - 497 hosts, 325k VMs/tasks

SfS2 Research Symposium

19

Modify our Simulations

- 1. Initialize simulations using Alibaba 2020
- 2. Update config and output files
- 3. Test simulation is working correctly
- 4. Integrate new energy models
- 5. Rewrite load balancing algorithms
- 6. Run full duration simulations

Results: Modifying our Simulations

- Initialize simulations
- Update config and output files
- Test simulation:
 - Problem: 56 days to run
 - Optimizations (20x faster!)
 - ML batch prediction
 - Caching calculations
 - Add checkpointing

Figure 11: Optimization strategies used to reduce the simulation runtime.

Eile	Edit	View	Insert	Format	<u>T</u> ools	T <u>a</u> ble	W
	<u>N</u> ew						
2	Open	a -				Ctrl+O	
	<u>S</u> ave				N	Ctrl+S	
	Save A	<u>i</u> s			43		

Figure 12: Checkpoint strategy for saving simulation progress midway through [7].

September 2024

Part 2: Future Work

- Fixing simulation:
 - Trigger events in simulator
- Evaluating energy:
 - Integrate new GPU power model
 - Model energy for servers using multi-CPUs and multi-GPUs
 - Rewrite load balancing algorithms
 - Run full duration simulations

Conclusion

- We learned:
 - Performing statistical analyses from noisy datasets
 - Developing machine learning models to solve a problem
 - Load balancing and applications to job scheduling
 - Efficiency of using ML batch prediction

Acknowledgement

- Supported by the <u>SfS² Program</u> and funded by the United States Department of Education FY 2023 Title V, Part A, Developing Hispanic-Serving Institutions Program five-year grant, Award Number P31S0230232, CFDA Number 84.031S.
- However, the contents of this presentation do not necessarily represent the policy of the US Department of Education, and you should not assume endorsement by the Federal Government.

Image Citations

[1] Online. From: <u>https://songrgg.github.io/images/datacenter.webp</u>

[2] On Global Electricity Usage of Communication Technology: Trends to 2030 - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Global-electricity-demand-of-data-centers-2010-2030_fig2_275653947

[3] Online. From: <u>https://www.nginx.com/resources/glossary/load-balancing/</u>[4] Online. From:

https://qph.cf2.quoracdn.net/main-qimg-6a23e1295bed5350309870109a808cdf-lq

[5] Online. From:

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-gpu-v2020/README.md

[6] Online. From:

https://finance.yahoo.com/news/alibaba-close-data-centres-australia-093000629.html

[7] Online. From: https://edu.gcfglobal.org/en/word2003/save-and-save-as-/1/

September 2024

September 2024