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Motivation



Motivation: Data is Fuel

& _ ®
® Modern Al requires massive amounts of data —-_
Q/ \O

® |ncreasing societal reliance on:

® \Wearables
Medical devices

[ ]
® Financial systems ?)
® Smart Systems/Internet of Things (loT) o

® Real data is powerful but risky




Why Real Data is Risky

Privacy: Real data can reveal sensitive information

Bias: Real data can be biased

Cost: Real data is expensive to collect and label

Scarcity: Real data is not always available
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Synthetic Data as a Potential Solution

® Synthetic data ("fake data") generated to mimic
real data

® Benefits:
® (Cost-effective
® Data augmentation: can fill gaps S cheeRTet L el
® Democratizes access to high-quality datasets Source: [Walker, 2020]
® Privacy-preserving?

Original data Synthetic data



A Familiar Concept: Simulation vs. Synthesis

Generating data is not new
Traditional Simulation (Deductive):

® Premise: We know the underlying laws (e.g., Physical
laws, ODEs, SDEs)

® Process: Rules — Data

e Examples: Monte Carlo integration, N-body simulations

Modern Synthetic Data (Inductive):

® Premise: Rules are unknown or too complex (e.g.,
human behavior, census demographics)

® Process: Data — Model — Synthetic Data

® Goal: Approximate distribution Pyut,(2) and sample
from it
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Privacy & Utility of Synthetic Data

Prior work investigates privacy & utility of synthetic data, but not its fidelity
[Ismalej et al., 2025]

Prlvacy' . | |Records D RealData
® Can synthetic data protect individuals? 1 pus et
e How vulnerable is it to membership inference? Attacker —Syathetic Data
Is 08 in D ? L
Source: [Everton Gomede, 2023]
Utility: e o
® How well do models trained on synthetic data T
perform on real tasks? e .
® Can synthetic data replace or augment real L

on Holdout

datasets effectively?
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Source: [MostlyAl, 2019]



Privacy & Utility of Synthetic Data

Findings:

® There exists a nuanced trade-off between privacy and utility of synthetic data
Even if synthetic data is privacy-preserving or useful, it may still:

e Miss important patterns or relationships

® Distort the underlying data distribution

So, what does it mean for synthetic data to be
faithful to the real data?

We can examine fidelity through an
information-based lens




Introduction & Problem Setup



Introduction: What This Study Does

® We investigate the fidelity of two types of synthetic data:

1. Tabular (Adult Census Dataset)
2. Time-series (Human Activity Recognition Dataset)

® Compare three types of data:
1. Ground Truth (real data)
2. Simulated (rule-based)
3. Synthetic (deep learning-based)



Introduction: What This Study Does
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Background



Background: Data Formats

Tabular Data

columns = attributes for those obs

¢ Tabular data:
® Rows and columns
® Column is a variable/feature
® Row is an observation/sample

Figure: Source: [Bobbitt, 2022]

® Time-series data:
® Time series of observations
® Time is the independent variable
® QObservations are the dependent variables

VARIABLE

TIME

Figure: Source: [Pandita, 2024]



Background: Generative Models

Generative models are a class of machine learning models that can generate new data
based on a given dataset

¢ Generative Adversarial Networks (GANs): uses two neural networks to generate
new data

¢ Variational Autoencoders (VAEs): uses a neural network to encode and decode
data



Background: Generative Models

Generative adversarial networks (GANs):

back-propagate
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Figure: Source: [Benveniste, 2023]
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Background: Generative Models

Variational autoencoders (VAEs):

Probabilistic

Probabilistic
Encoder

Decoder

. | - | S

Figure: Source: [MacFarquhar, 2024]



Datasets & Generative Pipelines



Dataset 1: Tabular Data - Adult Census

e Dataset: Adult Census
® Type: Tabular

® Source: UCI Machine Learning Repository

[Becker and Kohavi, 1996]
® Description:

® Number of samples/observations: 48,842
® Number of features/variables: 14

® Number of classes: 2
® Target variable: income
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Simulating Tabular Data: Overview

¢ Fit univariate distributions per feature
® For each feature, select and fit a statistical
distribution to match real data

® Best fit distributions are chosen based on
Akaike Information Criterion (AlIC)

e Sample from fitted marginals
® Generate synthetic values by sampling each
feature independently from its fitted
distribution

¢ Limitation: No feature interactions
® Each feature is generated independently, so
correlations and dependencies between
features in the real data are not preserved
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Synthetic Tabular Data: CTGAN & TVAE

We utilize the Synthetic Data Vault (SDV) ecosystem
[Montanez, 2018] to deploy deep learning models adapted
for tabular constraints:

® CTGAN (Conditional Tabular GAN):
® Adapts GANs to handle discrete/categorical
variables (which usually block gradient flow)
® Uses mode-specific normalization for non-Gaussian The Synthetic Data Vault
features

e TVAE (Tabular Variational Autoencoder):
® An optimized VAE specifically for mixed data types
(continuous numerical + categorical)



Dataset 2: Time-series Data - Human Activity
Recognition

® Dataset: Human Activity Recognition Using
Smartphones

® Type: Time-series

® Source: UCI Machine Learning Repository
[Reyes-Ortiz et al., 2013]
® Description:
® Number of samples/observations: 10,299
® 128-length windows (2.56 seconds)
sampled at 50 Hz
® 9 channels (body/total acceleration and
gyroscope)
® Number of classes/activities: 6 (six human
activities)




Simulating Time Series Data: Overview

® Goal: Generate synthetic time series data that reflects the key patterns of real
human activity sensor data
® Process [Yeomans et al., 2019]:
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Synthetic Time Series Data: TimeGAN

® Core Idea: Combines the Generative Adversarial Network (GAN) framework with a
recurrent neural network (RNN) embedding

® |earns and preserves temporal dynamics in sequential (time-series) data

e Generates realistic multi-channel time series that capture both feature dependencies
and temporal patterns



Fidelity Metrics



Tabular Fidelity: Per-Feature Histograms (JS)

Goal: Do the marginal distributions match?

For feature X with real histogram P and
synthetic Q:

IS(P,Q) = 5KL(P || M) + 3KL(Q || M)

M = (P +Q).

e Computed per continuous feature (e.g., age,
fnlwgt).

¢ |nterpretation: Lower JS = histograms
match.



Tabular Fidelity: Global Geometry (MMD)

Goal: Measure global similarity using kernel
geometry.
Flatten datapoints to vectors x,y. With kernel &(-,-): Maximum Mean Discrepancy (MMD)

MMD?(X,Y) Qkaz,xj

+722k'yzayj Zk xzayj

¢ Interpretation: Lower MMD =- more overlap
between global feature distributions.



Tabular Fidelity: Classifier Two-Sample Test (C2ST)

Goal: Can a machine distinguish Real from

Fake?
Method: Classifier Two-Sample Test (C25T)
® Train a logistic regression classifier. Pl
® |abel: Real = 1, Generated = 0. e N o
e Report ROC AUC on held-out test set. = .. —
Interpretation: seee L
® AUC = 0.5: Perfect Fidelity e

(indistinguishable).
e AUC =~ 1.0: Low Fidelity.



Time-Series Fidelity: Frequency (PSD)

The Goal: Do the synthetic signals have the same "rhythm" and oscillations?

Metric: PSD Jensen-Shannon Divergence

e Compute Power Spectral Density (PSD) histograms P Q) for each channel c.
JISE = IS(P©), Q).

Interpretation:
® Lower is better.

® Smaller JS means generated data matches the frequency content of ground truth.



Time-Series Fidelity: Temporal Dependence (ACF)

The Goal: Does the past predict the future in the same way?

Metric: Autocorrelation Absolute Difference
e Compute autocorrelation () (1) for lags 7 = 1,..., L.

e Measure average absolute difference:

ACF = Z| GT GEN(T)“

Interpretation:
® |ower is better.

® Means generated data has temporal dependence structure closer to ground truth.



Time-Series Fidelity: Cross-Channel Coupling

The Goal: Are the physical relationships between sensors preserved?

Metric: Cross-channel correlation matrix difference
® Compute C x C' correlation matrix X across channels.

e Compare via Frobenius norm:
Acorr = [|XaT — XgEN||F.

Interpretation:
® Lower is better.

® Cross-channel relationships (e.g. coupling of axes) are preserved.



Time-Series Fidelity: Global Window Geometry

The Goal: Do the full windows occupy the same region of the high-dimensional
manifold?

Metric: MMD on full windows
® Flatten each window to a vector in RT"C (here, 128 x 9 = 1152).
e Compute RBF-kernel MMD between GT windows and generated windows.

MMDQ(Xwin,YWm) = ...(Same Kernel formulation as Tabular)

Interpretation:
® Lower is better.

® Generated windows occupy the same region as real windows.



Results



Adult (Tabular): Global Fidelity

Experimental Setup:
¢ Real: UCI Adult (104-dim vectors).
e SIM: Per-feature marginals + Gaussian copula.
® SYN: CTGAN and TVAE (Deep Learning models).

Global Metrics (Lower is better for MMD, C2ST ~ 0.5 is best):

Metric GT vs SIM  GT vs CTGAN GT vs TVAE
MMD (RBF) 0.0030 0.0067 0.0088
C2ST AUC 0.576 0.746 0.741

Interpretation:
e MMD: SIM is significantly closer to real data geometry.
e C2ST: The classifier struggles most to distinguish SIM from Real.
® Verdict: Simple Simulation (SIM) is globally more faithful.



Adult (Tabular): Per-feature Histogram Match (JS)

Metric: Jensen-Shannon Divergence (Lower is better)

Feature SIM CTGAN TVAE

age (Continuous) 0.004 0.018 0.132
capital_gain (Continuous)  0.001 0.018 0.005

education_num (Discrete) ~ 0.554  0.024 0.950
hours_per_week (Discrete) 0.337  0.182 0.622

fnlwgt (Mixed) 0.165 0.281 0.068

Interpretation:
® SIM wins on smooth/continuous features (e.g., Age, Capital Gain).
¢ Deep Learning (CTGAN) wins on discrete/categorical features.

¢ Verdict: No single winner. SIM captures simple shapes; GANs capture complex
discrete modes.



HAR (Time-Series): Global Fidelity

Experimental Setup:
® Real: HAR windows (N = 2947,T = 128,C =9).
e SIM: DFM-mosaic simulator (Physically-inspired smoothing).
e SYN: TimeGAN (Recurrent GAN).

Global Metrics (Lower is better):

Metric GT vs SIM  GT vs TimeGAN
MMD (RBF) 0.0237 0.3863
Correlation Aoy (Frobenius) 0.399 4.157

Interpretation:
e Correlation: SIM preserves channel coupling (axes physics) far better.
e Geometry: TimeGAN windows are distant from the real manifold.
® Verdict: DFM-mosaic clearly outperforms TimeGAN on global structure.



HAR (Time-Series): Channel-level Example

Deep Dive: Channel body_acc_x (x-axis acceleration)

Metric (ch0) GT vs SIM  GT vs TimeGAN
PSD JS (Frequency) 0.0625 0.2783
ACF A (Time Dep.) 0.0639 0.1398

Interpretation:
® Frequency: SIM matches the spectral "rhythm" of walking.
® Time: SIM tracks the autocorrelation decay accurately.
® Verdict: SIM preserves the physical dynamics (“how the phone moves"); TimeGAN
distorts them.



Summary: Tabular Data (Adult)
The Battle: Simple Simulation (SIM) vs. Deep Learning (CTGAN/TVAE)

® Global Geometry (MMD) & Indistinguishability (C2ST):

® SIM wins It achieved the lowest MMD and was hardest for a classifier to distinguish
from real data

® Feature-Level Detail:
® Deep Learning wins on complexity CTGAN and TVAE fixed specific, challenging
features (like education_num and capital_loss) where the simple simulation failed
to capture the distribution shape

Tabular Takeaway

Simple simulation captures the global structure effectively, but deep generative models
are necessary to capture complex, non-standard marginal distributions



Summary: Time-Series Data (HAR)

The Battle: Mechanistic Simulation (DFM-mosaic) vs. Recurrent GAN (TimeGAN)

¢ Global Structure (MMD & Correlations):

® SIM dominates It preserved cross-channel relationships (e.g., how x-axis acceleration
relates to y-axis) far better than TimeGAN

¢ Temporal Dynamics (PSD & ACF):

® SIM dominates It matched the frequency content (rhythm of walking) and temporal
dependencies closer than the GAN

Time-Series Takeaway

A physically-inspired simulator (even a simple one) preserves dynamics better than a
generic deep learning model that attempts to learn physics from scratch



Conclusion



Conclusion: Implications for Synthetic Data

1. Fidelity is Multi-Dimensional

® A model can have perfect marginals but broken geometry, or perfect geometry
but broken temporal dynamics We must measure all axes

2. "State-of-the-Art" Requires Auditing

® Deep generative models are powerful, but they are not magic They can distort
underlying physics or correlations if not carefully tuned

3. Don’t Discard Simulation

® As shown in the Time-Series results: Sometimes, knowing the rules
(Simulation) yields more faithful data than trying to learn them (Synthesis)
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