Can Synthetic Data Replace the Real Thing? An Information-Theoretic Look at Data Fidelity

Brandon Ismalej¹

Advised by: Kellie M. Evans²

¹Department of Computer Science California State University, Northridge

²Department of Mathematics California State University, Northridge

Contents

- 1. Motivation
- 2. Introduction & Problem Setup
- 3. Background
- 4. Datasets & Generative Pipelines
 - 4.1 Adult Census (Tabular)
 - 4.2 Human Activity Recognition (Time-series)
- 5. Fidelity Metrics
 - 5.1 Tabular Metrics
 - 5.2 Time-series Metrics
- 6. Results
 - 6.1 Adult (Tabular)
 - 6.2 HAR (Time-series)
 - 6.3 Cross-dataset Summary
- 7. Conclusion
- 8. References

Motivation: Data is Fuel

- Modern Al requires massive amounts of data
- Increasing societal reliance on:
 - Wearables
 - Medical devices
 - Financial systems
 - Smart Systems/Internet of Things (IoT)
- Real data is powerful but risky

Why Real Data is Risky

• Privacy: Real data can reveal sensitive information

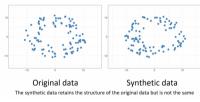
• Bias: Real data can be biased

• Cost: Real data is expensive to collect and label

• Scarcity: Real data is not always available

Synthetic Data as a Potential Solution

- Synthetic data ("fake data") generated to mimic real data
- Benefits:
 - Cost-effective
 - Data augmentation: can fill gaps
 - Democratizes access to high-quality datasets
 - Privacy-preserving?



Source: [Walker, 2020]

A Familiar Concept: Simulation vs. Synthesis

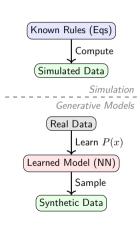
Generating data is not new

Traditional Simulation (Deductive):

- Premise: We know the underlying laws (e.g., Physical laws, ODEs, SDEs)
- **Process:** Rules → Data
- Examples: Monte Carlo integration, N-body simulations

Modern Synthetic Data (Inductive):

- Premise: Rules are unknown or too complex (e.g., human behavior, census demographics)
- **Process:** Data \rightarrow Model \rightarrow Synthetic Data
- Goal: Approximate distribution $P_{data}(x)$ and sample from it



Privacy & Utility of Synthetic Data

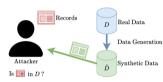
Prior work investigates privacy & utility of synthetic data, but not its fidelity [Ismalei et al., 2025]

Privacy:

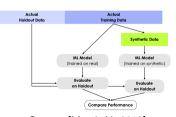
- Can synthetic data protect individuals?
- How vulnerable is it to membership inference?

Utility:

- How well do models trained on synthetic data perform on real tasks?
- Can synthetic data replace or augment real datasets effectively?



Source: [Everton Gomede, 2023]



Source: [MostlyAI, 2019]

Privacy & Utility of Synthetic Data

Findings:

• There exists a nuanced trade-off between privacy and utility of synthetic data

Even if synthetic data is privacy-preserving or useful, it may still:

- Miss important patterns or relationships
- Distort the underlying data distribution

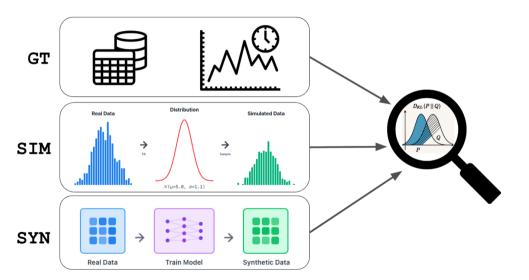
So, what does it mean for synthetic data to be faithful to the real data?

We can examine fidelity through an information-based lens

Introduction: What This Study Does

- We investigate the fidelity of two types of synthetic data:
 - 1. Tabular (Adult Census Dataset)
 - 2. **Time-series** (Human Activity Recognition Dataset)
- Compare three types of data:
 - 1. Ground Truth (real data)
 - 2. Simulated (rule-based)
 - 3. Synthetic (deep learning-based)

Introduction: What This Study Does



Background: Data Formats

• Tabular data:

- Rows and columns
- Column is a variable/feature
- Row is an observation/sample

Time-series data:

- Time series of observations
- Time is the independent variable
- Observations are the dependent variables

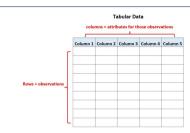


Figure: Source: [Bobbitt, 2022]

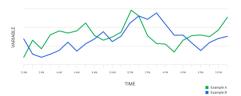


Figure: Source: [Pandita, 2024]

Background: Generative Models

Generative models are a class of machine learning models that can generate new data based on a given dataset

- Generative Adversarial Networks (GANs): uses two neural networks to generate new data
- Variational Autoencoders (VAEs): uses a neural network to encode and decode data

Background: Generative Models

Generative adversarial networks (GANs):

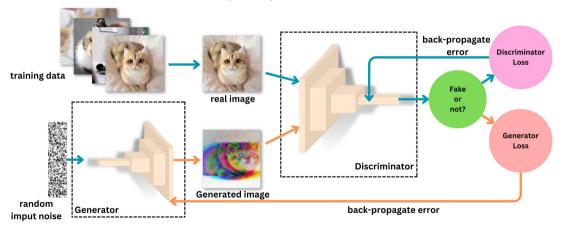


Figure: Source: [Benveniste, 2023]

Background: Generative Models

Variational autoencoders (VAEs):

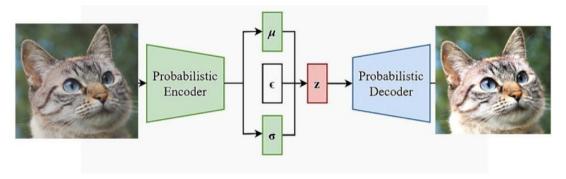


Figure: Source: [MacFarquhar, 2024]

Dataset 1: Tabular Data - Adult Census

- Dataset: Adult Census
- Type: Tabular
- Source: UCI Machine Learning Repository [Becker and Kohavi, 1996]
- Description:
 - Number of samples/observations: 48,842
 - Number of features/variables: 14
 - Number of classes: 2
 - Target variable: income

Simulating Tabular Data: Overview

• Fit univariate distributions per feature

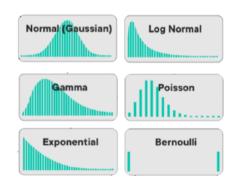
- For each feature, select and fit a statistical distribution to match real data
- Best fit distributions are chosen based on Akaike Information Criterion (AIC)

Sample from fitted marginals

 Generate synthetic values by sampling each feature independently from its fitted distribution

Limitation: No feature interactions

 Each feature is generated independently, so correlations and dependencies between features in the real data are not preserved



Synthetic Tabular Data: CTGAN & TVAE

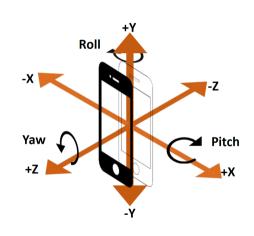
We utilize the **Synthetic Data Vault (SDV)** ecosystem [Montanez, 2018] to deploy deep learning models adapted for tabular constraints:

- CTGAN (Conditional Tabular GAN):
 - Adapts GANs to handle discrete/categorical variables (which usually block gradient flow)
 - Uses mode-specific normalization for non-Gaussian features

- TVAE (Tabular Variational Autoencoder):
 - An optimized VAE specifically for mixed data types (continuous numerical + categorical)

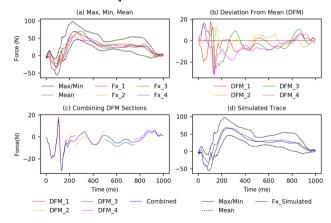
Dataset 2: Time-series Data - Human Activity Recognition

- Dataset: Human Activity Recognition Using Smartphones
- Type: Time-series
- Source: UCI Machine Learning Repository [Reyes-Ortiz et al., 2013]
- Description:
 - Number of samples/observations: 10,299
 - 128-length windows (2.56 seconds) sampled at 50 Hz
 - 9 channels (body/total acceleration and gyroscope)
 - Number of classes/activities: 6 (six human activities)



Simulating Time Series Data: Overview

- **Goal:** Generate synthetic time series data that reflects the key patterns of real human activity sensor data
- Process [Yeomans et al., 2019]:



Synthetic Time Series Data: TimeGAN

- Core Idea: Combines the Generative Adversarial Network (GAN) framework with a recurrent neural network (RNN) embedding
- Learns and preserves temporal dynamics in sequential (time-series) data
- Generates realistic multi-channel time series that capture both feature dependencies and temporal patterns

Tabular Fidelity: Per-Feature Histograms (JS)

Goal: Do the marginal distributions match?

For feature X with real histogram P and synthetic Q:

$$JS(P,Q) = \frac{1}{2}KL(P \parallel M) + \frac{1}{2}KL(Q \parallel M)$$
$$M = \frac{1}{2}(P + Q).$$

- Computed per continuous feature (e.g., age, fnlwgt).
- **Interpretation:** Lower JS ⇒ histograms match.

Tabular Fidelity: Global Geometry (MMD)

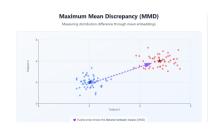
Goal: Measure global similarity using kernel geometry.

Flatten datapoints to vectors x, y. With kernel $k(\cdot, \cdot)$:

$$MMD^{2}(X,Y) = \frac{1}{n^{2}} \sum_{i,j} k(x_{i}, x_{j})$$

$$+\frac{1}{m^2}\sum_{i,j}k(y_i,y_j)-\frac{2}{nm}\sum_{i,j}k(x_i,y_j).$$

 Interpretation: Lower MMD ⇒ more overlap between global feature distributions.



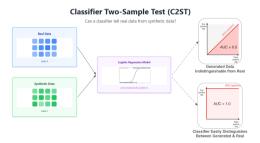
Tabular Fidelity: Classifier Two-Sample Test (C2ST)

Goal: Can a machine distinguish Real from Fake?

Method:

- Train a logistic regression classifier.
- Label: Real = 1, Generated = 0.
- Report ROC AUC on held-out test set.

- AUC ≈ 0.5: Perfect Fidelity (indistinguishable).
- AUC \approx 1.0: Low Fidelity.



Time-Series Fidelity: Frequency (PSD)

The Goal: Do the synthetic signals have the same "rhythm" and oscillations?

Metric: PSD Jensen-Shannon Divergence

• Compute Power Spectral Density (PSD) histograms $P^{(c)}, Q^{(c)}$ for each channel c.

$$JS_{PSD}^{(c)} = JS(P^{(c)}, Q^{(c)}).$$

- Lower is better.
- Smaller JS means generated data matches the frequency content of ground truth.

Time-Series Fidelity: Temporal Dependence (ACF)

The Goal: Does the past predict the future in the same way?

Metric: Autocorrelation Absolute Difference

- Compute autocorrelation $r^{(c)}(\tau)$ for lags $\tau=1,\ldots,L$.
- Measure average absolute difference:

$$\Delta_{\text{ACF}}^{(c)} = \frac{1}{L} \sum_{\tau=1}^{L} |r_{\text{GT}}^{(c)}(\tau) - r_{\text{GEN}}^{(c)}(\tau)|.$$

- Lower is better.
- Means generated data has temporal dependence structure closer to ground truth.

Time-Series Fidelity: Cross-Channel Coupling

The Goal: Are the physical relationships between sensors preserved?

Metric: Cross-channel correlation matrix difference

- Compute $C \times C$ correlation matrix Σ across channels.
- Compare via Frobenius norm:

$$\Delta_{\mathsf{corr}} = \|\Sigma_{\mathsf{GT}} - \Sigma_{\mathsf{GEN}}\|_F.$$

- Lower is better.
- Cross-channel relationships (e.g. coupling of axes) are preserved.

Time-Series Fidelity: Global Window Geometry

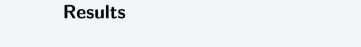
The Goal: Do the full windows occupy the same region of the high-dimensional manifold?

Metric: MMD on full windows

- Flatten each window to a vector in $\mathbb{R}^{T \cdot C}$ (here, $128 \times 9 = 1152$).
- Compute RBF-kernel MMD between GT windows and generated windows.

$$\mathrm{MMD}^2(X_{\mathsf{win}}, Y_{\mathsf{win}}) = \dots$$
 (Same Kernel formulation as Tabular)

- Lower is better.
- Generated windows occupy the same region as real windows.



Adult (Tabular): Global Fidelity

Experimental Setup:

• **Real:** UCI Adult (104-dim vectors).

• **SIM:** Per-feature marginals + Gaussian copula.

• SYN: CTGAN and TVAE (Deep Learning models).

Global Metrics (Lower is better for MMD, C2ST \approx 0.5 is best):

Metric	GT vs SIM	GT vs CTGAN	GT vs TVAE
MMD (RBF)	0.0030	0.0067	0.0088
C2ST AUC	0.576	0.746	0.741

Interpretation:

• MMD: SIM is significantly closer to real data geometry.

• C2ST: The classifier struggles most to distinguish SIM from Real.

Verdict: Simple Simulation (SIM) is globally more faithful.

Adult (Tabular): Per-feature Histogram Match (JS)

Metric: Jensen-Shannon Divergence (Lower is better)

Feature	SIM	CTGAN	TVAE
age (Continuous) capital_gain (Continuous)	0.004	0.018	0.132
	0.001	0.018	0.005
education_num (Discrete)	0.554	0.024	0.950
hours_per_week (Discrete)	0.337	0.182	0.622
fnlwgt (Mixed)	0.165	0.281	0.068

- SIM wins on smooth/continuous features (e.g., Age, Capital Gain).
- Deep Learning (CTGAN) wins on discrete/categorical features.
- Verdict: No single winner. SIM captures simple shapes; GANs capture complex discrete modes

HAR (Time-Series): Global Fidelity

Experimental Setup:

- **Real:** HAR windows (N = 2947, T = 128, C = 9).
- SIM: DFM-mosaic simulator (Physically-inspired smoothing).
- SYN: TimeGAN (Recurrent GAN).

Global Metrics (Lower is better):

Metric	GT vs SIM	GT vs TimeGAN
MMD (RBF) Correlation Δ_{corr} (Frobenius)	0.0237 0.399	0.3863 4.157

- Correlation: SIM preserves channel coupling (axes physics) far better.
- Geometry: TimeGAN windows are distant from the real manifold.
- Verdict: DFM-mosaic clearly outperforms TimeGAN on global structure.

HAR (Time-Series): Channel-level Example

Deep Dive: Channel body_acc_x (x-axis acceleration)

Metric (ch0)	GT vs SIM	GT vs TimeGAN
PSD JS (Frequency) ACF Δ (Time Dep.)	0.0625 0.0639	0.2783 0.1398

- Frequency: SIM matches the spectral "rhythm" of walking.
- **Time:** SIM tracks the autocorrelation decay accurately.
- Verdict: SIM preserves the physical dynamics ("how the phone moves"); TimeGAN distorts them.

Summary: Tabular Data (Adult)

The Battle: Simple Simulation (SIM) vs. Deep Learning (CTGAN/TVAE)

- Global Geometry (MMD) & Indistinguishability (C2ST):
 - **SIM wins** It achieved the lowest MMD and was hardest for a classifier to distinguish from real data
- Feature-Level Detail:
 - Deep Learning wins on complexity CTGAN and TVAE fixed specific, challenging features (like education_num and capital_loss) where the simple simulation failed to capture the distribution shape

Tabular Takeaway

Simple simulation captures the *global structure* effectively, but deep generative models are necessary to capture complex, non-standard *marginal distributions*

Summary: Time-Series Data (HAR)

The Battle: Mechanistic Simulation (DFM-mosaic) vs. Recurrent GAN (TimeGAN)

- Global Structure (MMD & Correlations):
 - **SIM dominates** It preserved cross-channel relationships (e.g., how x-axis acceleration relates to y-axis) far better than TimeGAN
- Temporal Dynamics (PSD & ACF):
 - **SIM dominates** It matched the frequency content (rhythm of walking) and temporal dependencies closer than the GAN

Time-Series Takeaway

A physically-inspired simulator (even a simple one) preserves *dynamics* better than a generic deep learning model that attempts to learn physics from scratch

Conclusion: Implications for Synthetic Data

1. Fidelity is Multi-Dimensional

• A model can have perfect marginals but broken geometry, or perfect geometry but broken temporal dynamics We must measure all axes

2. "State-of-the-Art" Requires Auditing

 Deep generative models are powerful, but they are not magic They can distort underlying physics or correlations if not carefully tuned

3. Don't Discard Simulation

• As shown in the Time-Series results: Sometimes, *knowing the rules* (Simulation) yields more faithful data than *trying to learn them* (Synthesis)

Thank You!

Any Questions?

Contact

brandon.ismalej.671@my.csun.edu

Acknowledgments

Special thanks to my advisor: **Dr. Kellie Evans**,

Department of Mathematics

References

References I

Becker, B. and Kohavi, R. (1996).

Adult.

UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5XW20.

Benveniste, D. (2023).

How generative adversarial networks work!

Bobbitt, Z. (2022).

What is tabular data? (definition & example).

Everton Gomede, P. (2023).

Exploring the frontiers of synthetic data: A comprehensive overview of ctgan and its applications.

Ismalej, B., Ruan, X., and Jiang, X. (2025).

Evaluating privacy and utility of synthetic tabular data with membership inference attacks.

In IEEE Future Machine Learning and Data Science (FMLDS), Los Angeles, CA.

MacFarquhar, M. (2024).

The art of encoding: Building a variational autoencoder for mnist digits.

Montanez, A. M. (2018).

Sdv: an open source library for synthetic data generation.

MIT DSpace.

hdl:1721.1/121631.

References II

MostlyAl (2019).

Validate synthetic data via train-synthetic-test-real.

Pandita, A. (2024).

Unveiling the essence of time series analysis.

Reyes-Ortiz, J., Anguita, D., Ghio, A., Oneto, L., and Parra, X. (2013).

Human Activity Recognition Using Smartphones.

UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C54S4K.

Walker, K. (2020).

Synthetic data: Unlocking the power of data and skills for machine learning – data in government. Blog.gov.uk.

Yeomans, J., Thwaites, S., Robertson, W. S. P., Booth, D., Ng, B., and Thewlis, D. (2019).

Simulating time-series data for improved deep neural network performance.