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Motivation

● Data Centers (DCs) consume ~1% of global energy (2020) [1]

● Rising demand for AI, ML and Cloud Computing will significantly 

increase this consumption

● GPUs are key for these workloads but inefficient GPU 

management leads to:
○ Suboptimal resource utilization

○ Higher energy consumption

○ Increased costs

● Efficient, GPU-aware workload management in DCs can help:
○ Maximize resource efficiency

○ Minimize energy consumption

○ Contribute to sustainable and scalable DC operations
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Problem & Objective

● Problem:
○ Limited research exists on predicting GPU power consumption using 

real-world workload data

○ Publicly available workload traces are scarce, hindering accurate 

modeling

● Objective:
○ Develop GPU power prediction models using synthesize data to 

emulate real-world workloads

○ Integrate model into GPUCloudSim Plus to further study of 

energy-aware workload simulations

○ Support energy-efficient GPU workload management in DC’s
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Design
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Figure 1: Research Design Framework 



Statistical Analyses of Workload 
Traces

● Conducted on:
○ Alibaba v2020 Cluster Trace 

[2]

■ 6,500 GPUs

■ Spanning ~1,800 

machines

○ SenseTime Helios GPU 

Cluster Trace [3]

■ ~6,000 GPUs

■ Spanning 4 GPU 

clusters
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● In this analysis:

○ Overlapping tasks 

excluded

○ Focused on 95th 

percentile

■ To gain a broader 

view of non-zero 

inter-task delay 

times

● Insights gained from this analysis shaped design of 
experiments.
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Alibaba 
Trace

Helios Trace

Count 1,669,790 1,112,131

Q1 67 2

Median 348 4

Q3 1,624 21

Max 2,786,690 4,196,357

Figure 2: Distribution of Alibaba Trace Figure 3: Distribution of Helios Trace

Table 1: Summary Statistics of Inter-Task Delay Times



Experiments & Data Collection
● A set of 14 benchmarks with varying GPU usage:
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Benchmark Application Domain Avg. Power 
[W]

Avg. GPU Util 
[%]

GRAM Avg. 
[GiB]

2D_CONVOLUTION Image Processing 59.05 98.10 0.60
BERT_QA_PREDICTION Natural Language 

Processing
60.73 95.05 1.29

BLACKSCHOLES Computational Finance 22.86 8.83 0.16
DISTILBERT_TRAINING Natural Language 

Processing
57.87 98.62 6.47

EUCLIDEAN_DISTANCE Mathematical Computation 51.08 99.33 1.64

FFT Signal Processing 55.19 99.45 4.61
GAN_MNIST_DIGITS Generative Adversarial 

Network
60.77 97.96 0.79

IMAGE_CLASSIFIER Image Classification 23.09 6.74 0.29
K_MEANS Unsupervised Learning 22.86 17.46 0.41
MATMUL Matrix Multiplication 27.85 13.06 1.36
MONTE_CARLO_PRICING Financial Simulation 43.01 98.31 3.48
SEPIA_TRANSFORMATION Image Processing 23.10 5.94 0.26

SPECTROGRAM_TRANSFORMATION Audio Processing 23.65 5.18 0.18

SIMPLE_CNN Image Recognition 42.30 97.21 2.02

Table 2: Domain and Metrics of GPU Benchmark Applications



Experiments & Data Collection

● Designed five distinct 

experiments to cover a wide 

range of inter-task delay times, 

using our benchmarks
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● “No delays” simulates peak usage 

● Short delays simulate high-frequency task 
switching

● Longer delays reflect idle periods, like 
downtime

● Experiments yielded ~40 hours of data

● Data collected second-by-second

CPU 2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 
3.00GHz (10 cores)

Memory 98,304 MB

Disk 2 * 480 GB

GPU NVIDIA Tesla P4 8GB GDDR5

OS Ubuntu 22.04.2 LTS

Delay Times 
(seconds)

Task Order

Exp 1 No delays Sequential, reverse, 
shuffled 

Exp 2 0 - 10 shuffled

Exp 3 1 - 20 Sequential, reverse, 
shuffled

Exp 4 1 - 30 shuffled

Exp 5 300 - 1000 shuffled

Table 3: Cluster System Configuration 

Table 4: Experiment Configurations



Experiments & Data Collection

● Features extracted for duration 

of every task-active and idle 

period

○ To align with available 

features of real-world 

workloads that would be 

implemented in cloud 

simulator
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● GRAM Avg. & Max. [GiB] ; Util. Avg. [%] ; Power Avg. [W]

Figure 4: Illustration of Data Preprocessing 



Modelling GPU Power

● Four machine learning algorithms utilized:

○ XGBoost (eXtreme Gradient Boosting)

○ CatBoost (Categorical Boosting)

○ LightGBM

○ LSTM (Long Short-Term Memory)

● Utilized a 60/20/20 split of data for:

○ Training/Testing/Validation
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Modelling GPU Power

● To predict GPU power 

consumption:

○ Training Input:

■ GPU GRAM Avg. 

[GiB]

■ GPU GRAM Max. 

[GiB]

■ GPU Utilization Avg. 

[%]

○ Training Output:

■ GPU Power Avg. [W]
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● Initial ML model training 

results:

CatBoost LightGBM XGBoost  LSTM

RMSE 
Value

1.218 1.224 1.284 1.520

● Grid-search hyperparameter 

tuning performed to improve 

RMSE

Table 5: RMSE Values of Initial Model Training



Modelling GPU Power

● Best performing model - XGBoost RMSE = 1.217

12Figure 5: Best XGBoost Model Predicted vs. Actual GPU 
Consumption



Model Integration to Simulator

● Processing the Alibaba 2020 workload trace:

○ Using 4 files of: machine spec, task, instance, and sensor

● Filter out tasks missing:

○ Planned VM resources

○ Sensor, server info.

○ Task duration
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Future Work

● Integrate new GPU power model into modified GPUCloudSimPlus

● Model energy for servers using multi-CPUs and multi-GPUs 

● Rewrite load balancing algorithms

● Run full duration simulations
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