CAL-BRIDGE

Advancing the Study of Larger than Life Cellular Automata with Lua Scripting

Brandon Ismalej, Computer Science, CSUN Cal-Bridge, CSUN Department of Mathematics, Dr. Kellie Evans

Cal-Bridge Research Symposium | September 14, 2024

Outline

- Introduction
- Motivation
- Related Work
- Design and Methodology
- Experimental Results and Analysis
- Conclusion
- References

Larger than Life Cellular Automata

- <u>Cellular Automata (CA):</u> A class of discrete, grid-based computational models which are based on simple rules and algorithms
 - Cell states: Typically binary, being either "live" (1) or "dead" (0), and can change states based on states of neighboring cells
- <u>Conway's Game of Life (*Life*):</u> A CA with simple rules for cell birth, survival, and death, which can lead to dynamic patterns like "spaceships" [1]
- Larger than Life (LtL): A generalization of Life, that extends to larger neighborhoods and uses intervals for birth and survival thresholds [2]
 Complexity: Allows for exploration of more intricate patterns, such as "bugs"

How can we explore these CA?

<u>Golly</u> is an open-source software for the exploration and simulation of Conway's Game of Life and other cellular automata, including Larger than Life [3]

- Written in C++
- Supports scripting in Python and Lua
- Supports bounded and unbounded universes

Figure 1: Snapshot of Golly GUI [3]

Motivation

- In *Life*, the most intriguing patterns are known as "spaceships"
 - Can carry information across space as time updates
 - The most famous spaceship is known as a glider
- In LtL, generalizations of Life's spaceships are known as "bugs"
 - Exhibit complex dynamics and behaviors

Figure 2: Life's glider [4]

Figure 3: LtL Range 25 Bug CAL-BRIDC

"If cellular automata follow specific rules and algorithms, how can we systematically discover and identify complex patterns like "bugs" within these systems?"

Current Methods for Bug Discovery

Random Soup Searching

- "apgsearch" is an automated search program written by Adam P. Goucher
 [5]
 - Generates large amounts of random asymmetrical soups and runs each soup with a user provided CA rule

• Finite Deterministic Configurations

- Evans describes the use of geometric initial configurations, such as rectangles and circles, that a rule will "sculpt" into a bug [2] [6]
- Commonly used and leverages configurations that resemble the geometry of bugs

Figure 4: Glider Emerging from Random Soup

Figure 5: Initial Configuration

Figure 6: Geometric Initial Configuration

An illustration of a geometric initial configuration sculpted into a bug over time = t by the LtL rule with parameters R25,C0,M1,S706..1216,B706..958,NM:

- •
- Dimensions of Initial Configuration: Circle: radius = 24, y setback = 7, Rectangle: length = 21, width = 15

Scripting Design

A set of Lua scripts has been developed to automate the creation and simulation of geometric initial configurations onto the Golly grid

The most notable script aims to:

- <u>Create and place configurations</u>, based on user-defined parameters, such as:
 - Shape of live and dead sites: circle, rectangle, ellipse
 - Dimensions of shapes: radii, length/width, major/minor axes
 - Vertical "setback" of dead sites: vertical distance from center of live site to center of dead site
- <u>Run a simulation of every configuration</u> created to:
 - Detect surviving patterns, particularly bugs
 - Sort configurations into CSV files, based on their behavior after the simulation has been run, such as patterns that die off

Classifying Patterns: Wolfram's Framework [7]

Figure 7: Flowchart of Pattern Classification

- Class 1 (Homogenous States): Dead patterns with no live cells after simulation are classified as non-surviving and logged in "not_survive.csv"
- Class 2 (Periodic Structures): Surviving patterns with no vertical displacement are classified as "still lifes" and logged in "still.csv", while those with displacement are logged in "survive.csv"
- Class 3 (Chaotic Aperiodic Behavior): Patterns that exceed the iteration limit are classified as timeouts and logged in "timeout.csv"
- Class 4 (Complex Localized Structures): Any intricate structures detected during exploration are classified and logged in "survive.csv"

Experimental Results

The following experiment was conducted, based on the user-parameters requested by our Golly-integrated script:

- Name convention for CSV files: • Exp1_R25_liveCircle_deadRectangle
- Number of simulation time steps before categorization:
- Rule for current grid:
 - R25,C0,M1,S720..1258,B720..978,NM
- Max. iterations in case of runtime error: 1.000
- Shape of live sites: C (circle) •
- Bounds of radii • 20,25
- Bounds for y-setback 5.15
- Shape of dead sites: R (rectangle) •
- Bounds of length/width 17,22 17,22

	В	С	D	Ē	F	G	Н	I	J	К
1	R25,C0,M1,S7201258,B72 0978,NM									
2	Dimensions of Live Shape	Y Setback	Shape of Dead Cells	Dimensions of Dead Shape	Period	dy	Population	Bound Box Wd	Bound Box Ht	Hash Value
3	21	6	R	17 17	1	-3	1361	49	49	-565013023
4	21	7	R	17 17	1	-3	1361	49	49	-565013023
5	21	7	R	19 17	1	-3	1361	49	49	-565013023
6	21	8	R	17 17	1	-3	1361	49	49	-565013023
7	21	8	R	17 18	1	-3	1361	49	49	-565013023
8	21	9	R	17 17	1	-3	1361	49	49	-565013023
9	21	9	R	18 17	1	-3	1361	49	49	-565013023
10	21	9	R	19 17	1	-3	1361	49	49	-565013023
11	21	10	R	17 18	1	-3	1361	49	49	-565013023
12	21	10	R	17 19	1	-3	1361	49	49	-565013023
13	21	10	R	18 17	36	-108	1378	48	49	1504284469
14	21	10	R	19 17	1	-3	1361	49	49	-565013023
15	21	10	R	20 17	36	-108	1378	48	49	1504284469
16	21	10	R	21 17	1	-3	1361	49	49	-565013023
17	21	11	R	17 17	1	-3	1361	49	49	-565013023
18	21	11	R	17 20	1	-3	1361	49	49	-565013023
19	21	11	R	19 18	1	-3	1361	49	49	-565013023

Experimental Results

The experiment yielded 2,376 configurations created, simulated, and classified.

Figure 8 above shows a snapshot of the output of "Exp1_R25_liveCircle_deadRectangle_survive.csv" with 1,163 initial configurations found to sculpt into bugs. •

Analysis

Data-Driven Exploration:

- Automating the creation, simulation, and sorting of geometric configurations produced large datasets
- These datasets allow for comprehensive analysis, supporting the formatting and validation of conjectures regarding LtL patterns

<u>Key Insights:</u>

- Understanding the sensitivity of bugs and other life-like patterns to specific initial configurations
- Identifying common traits in configurations that lead to stable or emergent behaviors

Conclusion

Summary of Key Contributions:

- Introduced an automated method for exploring geometric configurations in Larger than Life cellular automata
 Developed a systematic approach to classify patterns based on their
- behavior and dynamics
- Generated data to support further conjectures about bug-like patterns and other emergent phenomena and their parameter spaces

Impact and Potential:

- Enables more targeted searches compared to random soup methods, • improving pattern recognition A foundational approach for the integration of ML for advanced pattern
- detection

E-mail: brandon.ismalej.671@my.csun.edu Thank you!

References

- [1] M. Gardner, "Mathematical games The fantastic combinations of John Conway's new solitaire game 'Life'," Scientific American, Oct. 1970. [Online]. Available: https://www.scientificamerican.com/article/mathematical-games-1970-10/
- [2] K. M. Evans, "Larger than Life: it's so nonlinear," PhD Dissertation, University of Wisconsin-Madison, Madison, WI, 1996.
- [3] T. Rokicki and A. Trevorrow, "Golly: An open source, cross-platform application for exploring Conway's Game of Life and other cellular automata," 2024, version 4.3, accessed on August 11, 2024. [Online]. Available: <u>https://golly.sourceforge.io</u> [4] "Glider LifeWiki." Accessed: Sep. 04, 2024. [Online]. Available:
- https://conwaylife.com/wiki/Glider
- [5] A. P. Goucher, Mar. 2024. [Online]. Available: • https://gitlab.com/apgoucher/apgmera
- [6] K. M. Evans, "Larger than Life: threshold-range scaling of Life's coherent
- structures," Physica D: Nonlinear Phenomena, vol. 183, no. 1, p. 45–67, Sep. 2003. [7] S. Wolfram, Cellular Automata and Complexity: Collected Papers. Boca Raton, FL: CRC Press, 1994. [Online]. Available: https://www.wolframscience.com/reference/

