
Brandon Ismalej, Computer Science, CSUN
Cal-Bridge, CSUN Department of Mathematics, Dr. Kellie Evans

Cal-Bridge Research Symposium | September 14, 2024

Advancing the Study of Larger
than Life Cellular Automata

with Lua Scripting

Outline

• Introduction
• Motivation
• Related Work
• Design and Methodology
• Experimental Results and Analysis
• Conclusion
• References

Larger than Life Cellular Automata

• Cellular Automata (CA): A class of discrete, grid-based computational models
which are based on simple rules and algorithms
– Cell states: Typically binary, being either ”live” (1) or “dead” (0), and can change

states based on states of neighboring cells

• Conway’s Game of Life (Life): A CA with simple rules for cell birth, survival, and
death, which can lead to dynamic patterns like “spaceships” [1]

• Larger than Life (LtL): A generalization of Life, that extends to larger
neighborhoods and uses intervals for birth and survival thresholds [2]
– Complexity: Allows for exploration of more intricate patterns, such as “bugs”

How can we explore these CA?

Golly is an open-source software
for the exploration and simulation
of Conway’s Game of Life and
other cellular automata, including
Larger than Life [3]
• Written in C++
• Supports scripting in Python

and Lua
• Supports bounded and

unbounded universes Figure 1: Snapshot of Golly GUI [3]

Motivation

• In Life, the most intriguing
patterns are known as
“spaceships”
– Can carry information across

space as time updates
– The most famous spaceship

is known as a glider

• In LtL, generalizations of Life’s
spaceships are known as “bugs”
– Exhibit complex dynamics

and behaviors

Figure 2: Life’s glider [4]

Figure 3: LtL Range 25 Bug

Big Question:

“If cellular automata follow specific rules and algorithms, how can we
systematically discover and identify complex patterns like “bugs”
within these systems?”

Current Methods for Bug Discovery

• Random Soup Searching
– “apgsearch” is an automated search

program written by Adam P. Goucher
[5]

• Generates large amounts of random
asymmetrical soups and runs each soup
with a user provided CA rule

• Finite Deterministic Configurations
– Evans describes the use of geometric

initial configurations, such as
rectangles and circles, that a rule will
“sculpt” into a bug [2] [6]

– Commonly used and leverages
configurations that resemble the
geometry of bugs

Figure 4: Glider Emerging from Random
Soup

Figure 5: Initial Configuration

Figure 6: Geometric Initial Configuration
An illustration of a geometric initial configuration sculpted into a bug over time = t by the LtL
rule with parameters R25,C0,M1,S706..1216,B706..958,NM:

● Dimensions of Initial Configuration:
○ Circle: radius = 24, y − setback = 7, Rectangle: length = 21, width = 15

Scripting Design

A set of Lua scripts has been developed to automate the creation and simulation of
geometric initial configurations onto the Golly grid

The most notable script aims to:
• Create and place configurations, based on user-defined parameters, such as:

– Shape of live and dead sites: circle, rectangle, ellipse
– Dimensions of shapes: radii, length/width, major/minor axes
– Vertical “setback” of dead sites: vertical distance from center of live site to

center of dead site
• Run a simulation of every configuration created to:

– Detect surviving patterns, particularly bugs
– Sort configurations into CSV files, based on their behavior after the

simulation has been run, such as patterns that die off

Classifying Patterns:
Wolfram’s Framework [7]

• Class 1 (Homogenous States): Dead patterns with
no live cells after simulation are classified as
non-surviving and logged in “not_survive.csv”

• Class 2 (Periodic Structures): Surviving patterns with
no vertical displacement are classified as “still lifes”
and logged in “still.csv”, while those with
displacement are logged in “survive.csv”

• Class 3 (Chaotic Aperiodic Behavior): Patterns that
exceed the iteration limit are classified as timeouts
and logged in “timeout.csv”

• Class 4 (Complex Localized Structures): Any
intricate structures detected during exploration are
classified and logged in “survive.csv”

Figure 7: Flowchart of Pattern
Classification

Experimental
Results

• Name convention for CSV files:
– Exp1_R25_liveCircle_deadRectangle

• Number of simulation time steps before categorization:
– 60

• Rule for current grid:
– R25,C0,M1,S720..1258,B720..978,NM

• Max. iterations in case of runtime error:
– 1,000

• Shape of live sites:
– C (circle)

• Bounds of radii
– 20,25

• Bounds for y-setback
– 5,15

• Shape of dead sites:
– R (rectangle)

• Bounds of length/width
– 17,22 17,22

The following
experiment was
conducted, based on
the user-parameters
requested by our
Golly-integrated script:

Experimental Results
The experiment yielded 2,376 configurations created, simulated, and classified.

● Figure 8 above shows a snapshot of the output of
“Exp1_R25_liveCircle_deadRectangle_survive.csv” with 1,163 initial configurations found to sculpt
into bugs.

Analysis

Data-Driven Exploration:
• Automating the creation, simulation, and sorting of geometric

configurations produced large datasets
• These datasets allow for comprehensive analysis, supporting the

formatting and validation of conjectures regarding LtL patterns
Key Insights:
• Understanding the sensitivity of bugs and other life-like patterns to

specific initial configurations
• Identifying common traits in configurations that lead to stable or

emergent behaviors

Conclusion

Summary of Key Contributions:
• Introduced an automated method for exploring geometric

configurations in Larger than Life cellular automata
• Developed a systematic approach to classify patterns based on their

behavior and dynamics
• Generated data to support further conjectures about bug-like patterns

and other emergent phenomena and their parameter spaces

Impact and Potential:
• Enables more targeted searches compared to random soup methods,

improving pattern recognition
• A foundational approach for the integration of ML for advanced pattern

detection

Thank you!
E-mail: brandon.ismalej.671@my.csun.edu

References

• [1] M. Gardner, “Mathematical games - The fantastic combinations of John Conway’s
new solitaire game ‘Life’,” Scientific American, Oct. 1970. [Online]. Available:
https://www.scientificamerican.com/article/mathematical-games-1970-10/

• [2] K. M. Evans, “Larger than Life: it’s so nonlinear,” PhD Dissertation, University of
Wisconsin-Madison, Madison, WI, 1996.

• [3] T. Rokicki and A. Trevorrow, “Golly: An open source, cross-platform application for
exploring Conway’s Game of Life and other cellular automata,” 2024, version 4.3,
accessed on August 11, 2024. [Online]. Available: https://golly.sourceforge.io

• [4] “Glider - LifeWiki.” Accessed: Sep. 04, 2024. [Online]. Available:
https://conwaylife.com/wiki/Glider

• [5] A. P. Goucher, Mar. 2024. [Online]. Available:
https://gitlab.com/apgoucher/apgmera

• [6] K. M. Evans, “Larger than Life: threshold-range scaling of Life’s coherent
structures,” Physica D: Nonlinear Phenomena, vol. 183, no. 1, p. 45–67, Sep. 2003.

• [7] S. Wolfram, Cellular Automata and Complexity: Collected Papers. Boca Raton, FL:
CRC Press, 1994. [Online]. Available: https://www.wolframscience.com/reference/

https://www.scientificamerican.com/article/mathematical-games-1970-10/
https://golly.sourceforge.io
https://conwaylife.com/wiki/Glider
https://gitlab.com/apgoucher/apgmera

