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Motivation




Why Accuracy is not Enough

« Small, invisible changes can trick Al into confidently making wrong
decisions.

« Even when we train Al to defend itself, high accuracy can hide
deeper weaknesses.

The Central Question
Is accuracy a reliable measure of adversarial robustness or do the hidden

geometries of the network contradict accuracy?
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Background




Adversarial Attacks: Small Changes, Big Mistakes

Adversarial attacks are small, carefully crafted Fast Gradient Sign

Method (FGSM)
Tadv = x + € - sign (V,J(0,x,9))

changed to inputs.

We can alter each pixel by a small, calculated
amount.

These attacks reveal how brittle and blind Al Lo-Bounded
systems can be

_ Y2 (0.2y)
Tadv = T T+ € IV J(0,z,9)5
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Key Insight

e controls attack strength:
Larger e = stronger but more visible attacks
Smaller ¢ = weaker but stealthier attacks




Adversarial Training and Robustness

Adversarial training teaches models to defend exposing them to attacks
during training.

This can improve accuracy on attacked data, but doesn’t guarantee real
robustness

Accuracy may stay high even when model is fragile inside

Input Data Training Trained Model

-

Perturbed L. Adversarially
Input Data Data Training Trained Model B Ot

CAL-BRIDGE -~



M-PHATE & Why Geometry Matters

VANILLA Self vs. Self Embedding (2D)
 Neural networks transform inputs
into internal representations -

their “geometry”.

« We use a tool called M-PHATE to
visualize these hidden
geometries (Gigante et al., 2019)

PHATE 2
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Helps us see how much
network’s understanding shifts
under attack or defense
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Methods




Training the Networks

5 sets of neural networks trained on
MNIST Handwritten Digits:

4 networks/set
— Standard (Baseline, no adv. attack)
— FGSM attack-trained
— L2 attack-trained
— Lo attack-trained

Each set trained on varying levels of
attack strength.

We record their accuracy and clean and

perturbed in puts, and their A accuracy *

Extreme
Low

Low

Medium

FGSM: € = 2/255
L: & = 0.125
L e = 2/255

FGSM: € = 4/255
L,: € = 0.25
L & = 4/255

FGSM: € = 8/255
L,: € =0.5
L & = 8/255




Looking inside the Network: M-PHATE

VANILLA Clean vs. FGSM Perturbed (2D)

* We extracted each network’s
internal representation, its
final-layer geometry.

*  We visualized how clean and
perturbed inputs are
positioned in this space.
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e |f the points are far apart, the
network sees them as very
different; if close, they are
similar
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Looking Inside: Quantifying Changes

* MMD + Hypothesis Test: Global difference in clean vs perturbed
« KNN Overlap: Proportion of perturbed point within clean k-NN

 Euclidean Distance: Per-point clean-perturbed movement

k-Nearest Neighbors (k-N ' Euclidean Distance

/ Maximum Mean Discrepan

Similar?




Results
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Results: Accuracy and Perturbation

~ |_oo a ppea rs to be 'th e Change in Accuracy (Clean - Perturbed) Across Budgets and Variants
most robust - low =4
. - 2
accuracy drop. ol =

* L2 appears to be the
least robust - high
accuracy drop.
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* Smaller drops in
accuracy suggest
more robustness, but
is that the full story? Perturbation Budget
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Results: Geometry Contradicts Accuracy

m What it Measured Key Finding

A Accuracy Change from clean — perturbed | Lo, often showed smallest drop
performance

MMD p-value Global geometry similarity in | Sometimes suggested similarity
PHATE space despite large geometric shifts

kNN Recovery Proportion of perturbed points | “Robust” models could still have
Euclidean Distance | Median clean—perturbed separa- | Lo sometimes had largest separa-
_ tion (normalized) tion despite high accuracy

Accuracy alone can misrepresent robustness; small drops can hide
large geometric changes.

Geometry-based metrics expose vulnerabilities not seen through
accuracy.

Combining accuracy and geometry can offer.a fuller view of- Pyt
robustness. - e
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Conclusions & Future Work
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Conclusions & Future Work

Conclusions:

Accuracy alone is not a reliable measure of adversarial robustness.

« Geometry-based metrics (MMD, kNN recovery, euclidean distance)
reveal hidden vulnerabilities.

Some models (e.g. Leo) appear robust by accuracy but show large
geometric shifts.

Future Work:

Extend geometry analysis to other architectures and datasets.
Further examination of why this contradiction occurs.

Examine if we can see “when” adversarial robustness oceurs, or
geometries shift drastically. L TR Ty



hank you!

Questions?

brandon.ismalej.671@my.csun.edu
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Appendix




Network Architecture & Training Configurations

Experimental Setup

Network Architecture Training Configurations

e Type: Multilayer Perceptron e Standard: Baseline (no adversarial
(MLP) attack)

Input: 28 x 28 (flattened image) ® FGSM: Attack-trained

Hidden Layers: 128 — 64 neurons ® L2: Attack-trained
Output: 10 classes ® Loo: Attack-trained
Loss: Cross Entropy

Epochs: 50

* This training setup is used for all experlments forall 5 sets of
varying perturbation budgets. - Ogr
* Cross comparison is done only within each set | | s
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Dataset Details

Property
Dataset Name
Training Set Size
Test Set Size

Input Shape 28 x 28 grayscale images
Number of Classes

Preprocessing Flattening (1D vector) of size 28 x 28 = 784
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Training and Testing Accuracies

Budget / Variant

Train Acc

Test Acc
(Clean)

Test Acc
(Perturbed)

Train Loss

Test Loss
(Clean)

Test Loss
(Perturbed)

Vanilla
Extreme Low FGSM
Extreme Low L2
Extreme Low LINF
Low FGSM
Low L2
Low LINF
Medium FGSM
Medium L2
Medium LINF
High FGSM
High L2
High LINF
Extreme High FGSM
Extreme High L2
Extreme High LINF

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.924
0.981
1.000
0.652
0.678
0.996

0.897
0.879
0.869
0.887
0.902
0.901
0.898
0.901
0.905
0.896
0.900
0.918
0.901
0.859
0.898
0.917

0.872
0.869
0.876
0.853
0.838
0.878
0.804
0.782
0.868
0.720
0.712
0.828
0.552
0.494
0.760

0.0029
0.0429
0.0474
0.0297
0.0925
0.0070
0.0043
0.0347
0.0215
0.0053
0.2495
0.1117
0.0114
0.9419
0.8118
0.0576

0.4461
0.3614
0.3500
0.3596
0.4245
0.4143
0.4271
0.03887
0.3836
0.3988
0.3274
0.2919
0.3900
0.4767
0.4032
0.2981

0.4587
0.4350
0.3974
0.6742
0.6459
0.5222
0.8339
0.8544
0.5747
0.9582
1.0485
0.7499
1.2358
13571
0.8681




All Accuracies

Test Accuracies (Clean vs Perturbed) Across Training Variants and Budgets

Training Variant + Type
fgsm_Clean
fgsm_Perturbed
12_Clean
12_Perturbed
linf_Clean
linf_Perturbed
vanilla_Clean
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MMD P-values (PHATE

MMD p-values (PHATE) — Clean vs Perturbed by Perturbation & Ml%del

Extreme Low_fgsm

Extreme Low_|2

Extreme Low_linf

Low_fgsm 0.887

Medium_linf

MMD p-value (PHATE)
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kNN Recovery Proportions (Heatmap)

kNN Recovery Proportion in PHATE Space

fgsm-fgsm
fgsm-12
fgsm-linf
12-fgsm
12-12 - - : : 0.13
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kNN Recovery (PHATE)
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kNN Recovery Proportions (Barplot)

kNN Recovery Proportion — PHATE Space

Trained Model
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Euclidean Distance between Clean & Perturbed
Samples

Normalized Median Distance (Clean vs Perturbed) in PHATE 3D Space

vanilla- 0. 0.023 0.029 0.036 0.046 0.054 0.067 0.085 0.094 0.116 --mm

fgsm- O. 0.020 0.030 0.033 0.036 0.049 0.052 0.049 0.093 0.093 0.064 0.125 Zinh:l.ff}”;‘“

0.019 0.027 0.032 0.033 0.045 0.051 0.052 0.079 0.084 0.087 0.126
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Euclidean Distance Between Clean and Perturbed
Samples

Distribution of Normalized Median Distances (Clean vs Perturbed) in PHATE 3D Space

Trained Model
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