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Motivation



Why Accuracy is not Enough
• Small, invisible changes can trick AI into confidently making wrong 

decisions.
• Even when we train AI to defend itself, high accuracy can hide 

deeper weaknesses.



Background



Adversarial Attacks: Small Changes, Big Mistakes

• Adversarial attacks are small, carefully crafted 
changed to inputs. 

• We can alter each pixel by a small, calculated 
amount. 

• These attacks reveal how brittle and blind AI 
systems can be



Adversarial Training and Robustness

• Adversarial training teaches models to defend exposing them to attacks 
during training.

• This can improve accuracy on attacked data, but doesn’t guarantee real 
robustness

• Accuracy may stay high even when model is fragile inside



M-PHATE & Why Geometry Matters

• Neural networks transform inputs 
into internal representations - 
their “geometry”.

• We use a tool called M-PHATE to 
visualize these hidden 
geometries (Gigante et al., 2019)

• Helps us see how much 
network’s understanding shifts 
under attack or defense



Methods



Training the Networks
• 5 sets of neural networks trained on 

MNIST Handwritten Digits:

• 4 networks/set

– Standard (Baseline, no adv. attack)

– FGSM attack-trained

– L2 attack-trained

– L∞ attack-trained

• Each set trained on varying levels of 
attack strength. 

• We record their accuracy and clean and 
perturbed in puts, and their Δ accuracy



Looking inside the Network: M-PHATE

• We extracted each network’s 
internal representation, its 
final-layer geometry. 

• We visualized how clean and 
perturbed inputs are 
positioned in this space.

• If the points are far apart, the 
network sees them as very 
different; if close, they are 
similar



Looking Inside: Quantifying Changes
• MMD + Hypothesis Test: Global difference in clean vs perturbed

• KNN Overlap: Proportion of perturbed point within clean k-NN

• Euclidean Distance: Per-point clean-perturbed movement



Results



Results: Accuracy and Perturbation
• L∞ appears to be the 

most robust - low 
accuracy drop.

• L2 appears to be the 
least robust - high 
accuracy drop.

• Smaller drops in 
accuracy suggest 
more robustness, but 
is that the full story?



Results: Geometry Contradicts Accuracy

• Accuracy alone can misrepresent robustness; small drops can hide 
large geometric changes.

• Geometry-based metrics expose vulnerabilities not seen through 
accuracy.

• Combining accuracy and geometry can offer a fuller view of 
robustness.



Conclusions & Future Work



Conclusions & Future Work
Conclusions:
• Accuracy alone is not a reliable measure of adversarial robustness. 
• Geometry-based metrics (MMD, kNN recovery, euclidean distance) 

reveal hidden vulnerabilities.
• Some models (e.g. L∞) appear robust by accuracy but show large 

geometric shifts.
Future Work: 
• Extend geometry analysis to other architectures and datasets.
• Further examination of why this contradiction occurs.
• Examine if we can see “when” adversarial robustness occurs, or 

geometries shift drastically.
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Appendix



Network Architecture & Training Configurations

Experimental Setup

• This training setup is used for all experiments, for all 5 sets of 
varying perturbation budgets. 

• Cross comparison is done only within each set.



Dataset Details



Training and Testing Accuracies 



All Accuracies



MMD P-values (PHATE)



kNN Recovery Proportions (Heatmap)



kNN Recovery Proportions (Barplot)



Euclidean Distance between Clean & Perturbed 
Samples
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