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Motivation & Problem
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Background

Background

Motivation:

9,000 terawatt hours (TWh)

— ENERGY FORECAST
Widely cited forecasts suggest that the
total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.
B Networks (wireless and wired)
M Production of ICT
Consumer devices (televisions,
computers, mobile phones)
M Data centres

(¢]
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Electricity usage (TWh) of Data Centers 2010-2030 / Source:

(Nature, 2018)
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20.9% of projected—
electricity demand
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B Server power consumption

® Communications equipment energy
consumption

1 Energy consumption of power supply sysytem

M Energy consumption of refrigeration system

¥ Energy consumption of the storage device

Summary of Energy Consumption Distribution in data centers / Source:

(MDPI, 2017)




Background

Thermal-aware energy-efficient workload
scheduling
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Raised Floor Air Cooling for Datacenters / Source: naat.com

T: Task CRAC: Computer Room Air Conditioner
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. s
Thermal-aware energy-efficient workload

scheduling

Load balancing:

e Network distributes traffic AR e
o Client—loadbalancer S\ . & EHD

— Server \ Software
<—> @ ‘—> Load Balancer <—>

/ Internet o U

Load balancing algorithms: oa

e Adaptable to changes in network et S e
traffic e

o Thermal aware |Oad balandng Path from client to server using load balancing.

e Energy efficient load balancing
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Modeling of Cluster Servers [CPU]

Previous Work: I. Nisce, X. Jiang, S. P. Vishnu, 2023

e Purpose of the Paper:
o Using ML-based approach to predict temp. consumption of computer server
based on CPU-intensive workload

e Data Collection:
o Whetstone benchmark - to simulate CPU-intensive workload
o Stream benchmark - used to collect main memory bandwidth
o Postmark - used to simulate I/0-intensive workload by increasing the disk
utilization

e ML Algorithms for Thermal Prediction:
o XGBoost (eXtreme Gradient Boosting)
o Light Gradient Boosting
o Artificial Neural Networks

e Results:
o XGBoost Model to predict CPU temperature
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Modeling of Cluster Servers [GPU]

Previous works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi, 2023, 2024

GPU-Intensive Work Classification of Work
BERT Large Language Model Trained Model Types
DistiBERT Large Language Model Linear Regression
Image Classification Image Classification Bayesian Ridge Regression
Sepia Filtering Image Filtering XGBoost*
Euclidean Distance Math Heavy Operation LightGBM
Blackscholes Financial Algorithm i )
Basic NN for Regression
MonteCarlo Statistical Inferences
Multi-Layer Perceptron
Matrix Multiplication Math Heavy Operation
RNN with Attention Mechanism
K-means Clustering Machine Learning Algorithm
LSTM*
Fourier Transformation Decompose Audio Data
— _ * Most successful models that
Spectrogram Visualize Decomposed Audio Data
were tested.
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Background

Modeling of Cluster Servers

6629271507263 Test Set RMSE: ©.3531092405319214
LSTM ~ GPU Power (Window Size of 10 Seconds): Actual vs Predicted (Test Set) LSTM ~ GPU Temp (Window Size of 5 Seconds): Actual vs Predicted (Test Set)

Experiment Set 2: Chip 0 Average Temperature
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e The XGBoost model had better performance among all in CPU temperature
predicting. The LSTM models had better performance predicting erratic
behavior of GPU power and temperature. XGBoost models had similar levels
of performance for GPU temperature.
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e Will include more experiments with varied CPU/GPU utilization. Train
different ML models, measure other components such as /0O, and measure
server temperature and energy consumption with different workloads.
Improving accuracy of GPU power model is important.

All aforementioned previous works.
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S
Cluster System Configuration

e Located in CSUN’'s Main Distribution
Frame (MDF)

e Concrete & brick, no windows
e Flat roof, 8" thick walls

e 2”interior insulation & gypsum board
interior walls

e ~3,400 sq. ft. of floor space with
basement for cable management

e (Controlled physical access

e Availability of uninterruptible power
supply
e Monitored power distribution

e Air conditioning (humidity, filtering, | CSUNMDFSNe;RackS |
cooling)

e Fire suppression
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.
Cluster System Configuration

CPU 2 * Intel(R) Xeon(R) CPU E5-2690 v2 @
3.00GHz (10 cores)

Memory 98,304 MB (96 GB)

Disk 2 * Intel SSD DC S352- 480-GB
GPU NVIDIA Tesla P4 8GB GDDRS5
OS Ubuntu 22.04.2 LTS

Machine Specifications of Cluster System Configuration

~ Our cluster
system configuration
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Energy-efficient Placement

Problem: we don't have access to a large datacenter
e Even before we create a load balancer, how would we test it?

Cloud computing simulators

e Programs that simulate real-life datacenters
e Many different choices of simulators

GPUCloudSimPlus

e Models both CPU and GPU behavior
e Easy to write a load balancer for
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Energy-efficient Placement

Simulated Server

Diagnostics
L
( I 1
Three ML models D EE
e CPU models:
© CPU Temperature Sirviiilation Time CPU Temperature GPU Power
e GPU models: Model Model ‘
o GPU Power
-GPU Power
o GPU Temperature
GPU Temperature
Model
-
Models work together GPU Temp.
° Output GPU temperatu re The three machine learning models working together to predict the

GPU temperature of each individual server.

Now we can design a load balancing algorithm
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Energy-efficient Placement

ThermalAwareGpu Algorithm (TAGpu) Algorithm 1 Thermal AwareGpu
procedure GETVMFORCLOUDLET(CLOUDLET)
e Goal: X =0.5 x (numV Ms | numHosts)

if timeInSecsSinceLastSort >= 10 then

o Limitinfo. needed by load balancer Sort hostQueue by host GPU temperature
o Lower temperature of each server end if
count «+ —1
foundVm + null
e Sort hosts by GPU temp every 10 seconds while (! foundVm) && (+ + count < numHosts) do
host « hostQueue.peek()
foundVm « First VM with resources in host
) . if foundVm # null then
e General idea of the process: Dequeue foundVm, enqueue to host
o Use first host in queue (lowest temperature) e'seD - i bl
. . equeue host, enqueue to hostQueue
o Assign X tasks to VMs in that host end if
o Assume this will make the host warmer end while
o Move this host to end of queue if foundVm.hostld # lastHostId then
lastHostld < foundVm.hostld
host.numCloudlets + 1
. . Ise if host. Cloudlets >= X th
Works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. = sk
Ebrahimi, 2023, 2024 host.numCloudlets + 0

end if

return foundVm
end procedure
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Goals & Approach

Goal of current work:

e Develop GPU power ML-model
o Predict GPU power based on metrics gathered from each GPU task

e Training data:
o Restricted to format of the Alibaba Real-World Cluster Trace
o Would be data plugged into similar to enhance “aware” algorithms
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Real-World Workload Trace

Alibaba 2020 Cluster Trace

e From the Alibaba Cloud Platform for
Al (PAI)

o enterprise-level ML and deep
learning (DL) platform
supporting a diverse range of
Al-related services

e 6,500 GPUs, ~1,800 machines

e Users can submit ML jobs developed
in a variety of frameworks

e Users specify needed resources upon
submission (e.g. GPUs, CPUs,
memory)

e Each task may have >= 1 instance, can

run on multiple machines

Brandon Ismalej, CSUN
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Real-World Workload Trace

SenseTime Helios GPU Cluster Trace

e Helios: A private datacenter dedicated
for DL research and production within
SenseTime

e §8independent GPU clusters
e >12,000 GPUs total

The workload trace contains:
e 4 GPU clusters

e Farth, Saturn, Uranus, & Venus

Brandon Ismalej, CSUN

Venus Earth Saturn Uranus Total
CPU Intel, 48 Intel, 64 -
threads/node threads/node
RAM 376GB per node 256GB per node -
Network | IB EDR IB FDR -
GPU Volta Volta Pascal & | Pascal -
Model Volta
# of 27 25 28 25 105
VC’s
# of 133 143 262 264 802
Nodes
# of 1,064 1,144 2,096 2,112 6,416
GPUs
# of Jobs | 247k 873k 1,753k 490k 3.363k

Helios Datacenter Cluster Configurations

GPU Energy Modeling for Data Centers
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Workload Trace Analysis

e Statistical analysis of Alibaba and Helios conducted to gain insights on task
characteristics

e Overlapping tasks excluded
o Our cluster server contains only 1 GPU
e Focus on 95th percentile
o To gain more insights on non-zero delay times

o Using 100% of data provided no valuable insights
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Current Work - Workload Trace

Workload Trace Analysis

Distribution of Inter-task Delay Times (Up to 95th Percentile)

Median | 348

Statistical Summary of Workload Traces
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Q3 1,624 21 -
Max | 2.786.690 4.196.357

- Alibaba Trace
Alibaba Helios
Trace Trace gmoooo 1
Count | 1,669,790 1,112,131
Q 1 67 2 9 40‘00 60‘00 80’00 100‘00

Inter-task Delay Time (seconds)

Distribution of Inter-task Delay Times (Up to 95th Percentile)
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.
Cluster System Configuration

CPU 2 * Intel(R) Xeon(R) CPU E5-2690 v2 @
3.00GHz (10 cores)

Memory 98,304 MB (96 GB)

Disk 2 * Intel SSD DC S352- 480-GB
GPU NVIDIA Tesla P4 8GB GDDRS5
OS Ubuntu 22.04.2 LTS

Machine Specifications of Cluster System Configuration

Our cluster system configuration

Brandon Ismalej, CSUN GPU Energy Modeling for Data Centers April 16, 2025



GPU Applications

GPU Application Domain | Avg. Power Avg. GPU GRAM Avg.
[W] Util [%] [GiB]
2D CONVOLUTION Image Processing 59.05 98.10 0.60
BERT QA PREDICTION Natural Language 60.73 95.05 1.29
Processing
BLACKSCHOLES Computational Finance 22.86 8.83 0.16
DISTILBERT TRAINING Natural Language 57.87 98.62 6.47
Processing
EUCLIDEAN DISTANCE Mathematical 51.08 99.33 1.64
Computation
FFT Signal Processing 55.19 99.45 4.61
GAN MNIST DIGITS Generative Adversarial 60.77 97.96 0.79
a a Network
IMAGE CLASSIFIER Image Classification 23.09 6.74 0.29
K MEANS Unsupervised Learning 22.86 17.46 0.41
MATMUL Matrix Multiplication 27.85 13.06 1.36
MONTE CARLO PRICING Financial Simulation 43.01 98.31 3.48
SEPIA TRANSFORMATION Image Processing 23.10 5.94 0.26
SPECTROGRAM TRANSFORMATI Audio Processing 23.65 5.18 0.18
ON
SIMPLE CNN Image Recognition 42.30 97.21 2.02
GPU Applications & Avg. Statistics
GPU Energy Modeling for Data Centers April 16, 2025




GPU Applications

Training Data

0
nEnAE
HEBAD N
e Generative Adversarial Network uen
(GAN) - A deep learning model o —

used to generate synthetic images

e MNIST Digit Creation - The model
learns to create realistic
handwritten digits by training on
the data

-

e High computational demand due
to matrix operations for training
deep neural networks

Process of MNIST GAN Training / Source: Kaggle.com
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GPU Applications

GPU Application Domain | Avg. Power Avg. GPU GRAM Avg.
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GPU Applications

o,

e Fast Fourier Transform (FFT) -
Algorithm to convert time-domain
signals into frequency components

Amplitude

&, o
B —
—
B B——_
R
'___\"’-
g ——

e

-10

e Applications in signal processing, audio | Time (s)
analysis, image processing, & scientific B
computing

e PyTorch for GPU-based FFT
computation

Amplitude
S

N
T

High demand for parallel computation, L1 | I
0 50 100 150 200 250 300 350 400 450 500

leveraging GPU cores to speed up Frequency (Hz)
operations
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GPU Applications
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GPU Applications

e GPU-Accelerated Monte Carlo
Simulation for Financial Option Pricing

600

550
|

Estimates the net present value of an
option by simulating thousands of
possible future asset price paths

X 4 X v Py
b &‘\, M/ ARSI .y@
A S K7 NN N
w,é‘\’é‘_\ 0@;’{“%'
AN A N N7
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TR

Simulated price of SPY
500
|

450
|

e Massive parallelization of 100,000+

Y
Monte Carlo samples across GPU S _ 7
<
Cores I I I I I I I
. 0 20 40 60 80 100 120
e Random number generation and
cumulative product operations paye
performed using CUDA-accelerated Source: Rpubs.com

tensor operations in PyTorch
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GPU Applications
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Experiment Setup

e Designed five distinct experiments to
cover a wide range of inter-task delay
times, using our application

Delay Times Task Order
(seconds)
“N lays” simulates peak usage .
° 0 delay P & Exp 1 No delays Sequential,
e Short delays simulate high-frequency task reverse, shuffled
switching Exp 2 0-10 shuffled
e Longer delays reflect idle periods, like :
downtime Exp 3 1-20 Sequential,
reverse, shuffled
Exp 4 1-30 shuffled
e Experiments yielded ~40 hours of
second-to-second data Exp 5 300 - 1000 shuffled
e Data collected with Bash scripts running in Configurations of Experiments

the background recording GPU and CPU
metrics (e.g. temp., memory, power)
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Data Preprocessing

timestamp gpu_temp |gpu_power| gpu_GRAM _util gpu_util
2024-06-19 21:12:14 36 6.74 0 0
2024-06-19 21:12:15 36 6.64 0 0
2024-06-19 21:12:16 36 6.64 0 0
2024-06-19 21:12:17 36 6.5 0 0
2024-06-19 21:12:18 36 6.64 0 0 Start of GPU Task
, ) 2024-06-19 21.12:20 36| 2271 560302734375 1
of every task-active and idle 2024-06-19 21:12:21 36 5498 [1547607421875 36 GPU GRAM Avg.
period 2024-06-19 21:12:22 38 5976 (8280029296875 [ 96  GPU GRAM Max.
_ , , 2024-06-19 21:12:23 39| 43.94 |85.14404296875| | 100
o To align with available 2024-06-19 21:12:24 39| 6501 [85.14404296875]| 100
2024-06-19 21:12:25 40 49.21 (8514404296875 | 100
features of real-world 2024-06-19 21:12:26 41| T 5096 [85.14404206875( | 100] OO [ oWer. Avg.
workloads that would be 2024-06-19 21:12:28 41 6526 [85.14404206875|| 100
- - 2024-06-19 21:12:29 42| 6546 8514404296875 | 100/ -
Im plemented in cloud 2024-06-19 21:12:30 43 61.72 [85.14404296875 l 00| GPU Util- Avg.
simulator 2024-06-19 21:12:31 43 6059 [85.14404296875( | * 100
2024-06-19 21:12:32 43 61.27 8514404296875 | 100 i
2024-06-19 21:12:33 a4] X+ [85.14404296875| | 100] | rediction Value

Data Preprocessing Method on GPU Data
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Machine Learning Algorithms

e XGBoost (eXtreme Gradient Boosting)

o Tree boosting

o Notable use in winning Kaggle competitions

o High accuracy in predicting CPU temp. & GPU energy
e (atBoost (Categorical Boosting)

o Gradient boosting

o High accuracy in GPU energy prediction
e LightGBM (Light Gradient-Boosting Machine)

o Gradient boosting decision tree

e Regression showed undesirable results (RMSE = ~5.0)
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Machine Learning Algorithms

e Training Features: CatBoost | LightGBM | XGBoost
o GPU GRAM Avg. [GiB]
o GPU GRAM Max. [GiB] RMSE 1.218 1.224 1.284
o GPU Utilization Avg. [%] Value

Initial ML training results

e Grid search hyperparameter tuning performed
o Goal of improving RMSE
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Model Performance

Best performing model - XGBoost RMSE =1.217

RMSE improved ~5.2% after hyperparameter tuning

Actual vs Predicted GPU Power Usage (Best XGBoost)

— Actual A= —
—— Predicted B = I =
60 - S| T il m ] =

L n [ ’

50 4

GPU Power (W)
S
o
L

w
o
L

20 4

10 4

0 10000 20000 30000 40000 50000
Timestep

Best XGBoost Model Predicted vs. Actual GPU Consumption
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Future Work

Next Steps

Alibaba v2020 (5 GBs)

e We used 4 files: machine spec, task,
instance, and sensor

Filtered out tasks missing:

e Planned VM resources
e Sensor, server information
e Task duration

Over 66 days
e 497 hosts, 325k VMs/tasks

Brandon Ismalej, CSUN
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Summary

e Developed a GPU power prediction to utilize task-average metrics collected from GPU
e Processed Alibaba v2020 cluster trace data to integrate into GPUCloudSimPlus

e To further our study of performance-aware load balancing algorithms
o Aimed toward energy efficiency in datacenters
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Future Work

e Integrate new GPU power model into modified GPUCloudSimPlus
e Model energy for servers using multi-CPUs and multi-GPUs
e Rewrite load balancing algorithms

e Run full duration simulations
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Q&A

Thank You

Questions?

brandon.ismalej.671@my.csun.edu

COMPUTER
To Main Paper: " SCIENCE

O
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