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Foundation of Work
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This work took place:

● CSUN’s SfS2 Summer Program - Funded by US Dept. of Education

● With CSUN NSF REU Site: Applying Data Science on Energy-efficient Cluster 

Systems and Applications

● Advisor: Dr. Xunfei Jiang

○ REU PI

○ SfS2 Core Team

○ Co-director of Cloud Infrastructure and Server Architecture (CISA) Lab
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 Google Data Center in Berkeley County by  Wade Spees wspees@postandcourier.com
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Facebook: 18 data centers
2.936 billion monthly active users (April 2022)
4 PB (4*1024 TB) of data generated per day 
300PB in Hive (data warehouse)

Google: 23 data centers 
Youtube: 1 billion hours of video watched per day (1000 PB/day)
621 hours of video uploaded every minute (873 TB/day)

US Datacenters: 2-3% of all electricity generate 
73 billion kWh in 2020 ($0.14*73 = $10.22 billion)
1% energy cost saving = $0.1 billion = $100 million 
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Background

Motivation:

Background
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Electricity usage (TWh) of Data Centers 2010-2030 / Source: 
(Nature, 2018)

Summary of Energy Consumption Distribution in data centers / Source: 
(MDPI, 2017)
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Thermal-aware energy-efficient workload 
scheduling

Background
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T: Task         CRAC: Computer Room Air Conditioner

T
T
T
T

Raised Floor Air Cooling for Datacenters / Source: naat.com
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Load balancing:
● Network distributes traffic

○ Client → load balancer 
→ server

Load balancing algorithms:
● Adaptable to changes in network 

traffic
● Thermal aware load balancing
● Energy efficient load balancing

Background
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Path from client to server using load balancing.

Thermal-aware energy-efficient workload 
scheduling
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Modeling of Cluster Servers [CPU]
Previous Work: I. Nisce, X. Jiang, S. P. Vishnu, 2023
● Purpose of the Paper:

○ Using ML-based approach to predict temp. consumption of computer server 
based on CPU-intensive workload

● Data Collection:
○ Whetstone benchmark - to simulate CPU-intensive workload
○ Stream benchmark – used to collect main memory bandwidth
○ Postmark – used to simulate I/O-intensive workload by increasing the disk 

utilization

● ML Algorithms for Thermal Prediction:
○ XGBoost (eXtreme Gradient Boosting)
○ Light Gradient Boosting
○ Artificial Neural Networks

● Results:
○ XGBoost Model to predict CPU temperature

Background
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Modeling of Cluster Servers [GPU]

Previous works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi, 2023, 2024

Background
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GPU-Intensive Work Classification of Work

BERT Large Language Model

DistilBERT Large Language Model

Image Classification Image Classification

Sepia Filtering Image Filtering

Euclidean Distance Math Heavy Operation

Blackscholes Financial Algorithm

MonteCarlo Statistical Inferences

Matrix Multiplication Math Heavy Operation

K-means Clustering Machine Learning Algorithm

Fourier Transformation Decompose Audio Data

Spectrogram Visualize Decomposed Audio Data

Trained Model Types

Linear Regression

Bayesian Ridge Regression

XGBoost*

LightGBM

Basic NN for Regression

Multi-Layer Perceptron

RNN with Attention Mechanism

LSTM*

* Most successful models that 
were tested.
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Modeling of Cluster Servers
Background
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•  The XGBoost model had better performance among all in CPU temperature 
predicting. The LSTM models had better performance predicting erratic 
behavior of GPU power and temperature. XGBoost models had similar levels 
of performance for GPU temperature.

• Will include more experiments with varied CPU/GPU utilization. Train 
different ML models, measure other components such as I/O, and measure 
server temperature and energy consumption with different workloads. 
Improving accuracy of GPU power model is important.

All aforementioned previous works.
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Cluster System Configuration
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● Located in CSUN’s Main Distribution 
Frame (MDF)

● Concrete & brick, no windows

● Flat roof, 8” thick walls

● 2” interior insulation & gypsum board 
interior walls

● ~3,400 sq. ft. of floor space with 
basement for cable management

● Controlled physical access

● Availability of uninterruptible power 
supply

● Monitored power distribution

● Air conditioning (humidity, filtering, 
cooling)

● Fire suppression

CSUN MDF Server Racks
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Cluster System Configuration
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CPU 2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 
3.00GHz (10 cores)

Memory 98,304 MB (96 GB)

Disk 2 * Intel SSD DC S352- 480-GB

GPU NVIDIA Tesla P4 8GB GDDR5

OS Ubuntu 22.04.2 LTS

Our cluster 
system configuration

Machine Specifications of Cluster System Configuration
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Energy-efficient Placement

Problem: we don’t have access to a large datacenter
● Even before we create a load balancer, how would we test it?

Cloud computing simulators
● Programs that simulate real-life datacenters
● Many different choices of simulators

GPUCloudSimPlus
● Models both CPU and GPU behavior
● Easy to write a load balancer for

Background

16
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Energy-efficient Placement

Three ML models
● CPU models:

○ CPU Temperature 
● GPU models:

○ GPU Power
○ GPU Temperature

Models work together
● Output: GPU temperature

Now we can design a load balancing algorithm

Background

17

The three machine learning models working together to predict the 
GPU temperature of each individual server.
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Energy-efficient Placement

ThermalAwareGpu Algorithm (TAGpu)
● Goal:

○ Limit info. needed by load balancer
○ Lower temperature of each server

● Sort hosts by GPU temp every 10 seconds

● General idea of the process:
○ Use first host in queue (lowest temperature)
○ Assign X tasks to VMs in that host
○ Assume this will make the host warmer
○ Move this host to end of queue

Works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. 
Ebrahimi, 2023, 2024

Background

18
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Goals & Approach

Goal of current work:
● Develop GPU power ML-model 

○ Predict GPU power based on metrics gathered from each GPU task

●  Training data:
○ Restricted to format of the Alibaba Real-World Cluster Trace
○ Would be data plugged into similar to enhance “aware” algorithms

Current Work - Goal

19
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Real-World Workload Trace

Alibaba 2020 Cluster Trace

● From the Alibaba Cloud Platform for 
AI (PAI)

○ enterprise-level ML and deep 
learning (DL) platform 
supporting a diverse range of 
AI-related services

● 6,500 GPUs,  ~1,800 machines

● Users can submit ML jobs developed 
in a variety of frameworks

● Users specify needed resources upon 
submission (e.g. GPUs, CPUs, 
memory)

● Each task may have >= 1 instance, can 
run on multiple machines

Current Work - Workload Trace

20

Alibaba PAI Process Flow
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Real-World Workload Trace

SenseTime Helios GPU Cluster Trace 

● Helios: A private datacenter dedicated 
for DL research and production within 
SenseTime

● 8 independent GPU clusters

● > 12,000 GPUs total

The workload trace contains:

● 4 GPU clusters

● Earth, Saturn, Uranus, & Venus

Current Work - Workload Trace

21

Venus Earth Saturn Uranus Total

CPU Intel, 48 
threads/node

Intel, 64 
threads/node

-

RAM 376GB per node 256GB per node -

Network IB EDR IB FDR -

GPU 
Model

Volta Volta Pascal & 
Volta

Pascal -

# of 
VC’s

27 25 28 25 105

# of 
Nodes

133 143 262 264 802

# of 
GPUs

1,064 1,144 2,096 2,112 6,416

# of Jobs 247k 873k 1,753k 490k 3.363k

Helios Datacenter Cluster Configurations
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Workload Trace Analysis

● Statistical analysis of Alibaba and Helios conducted to gain insights on task 
characteristics

● Overlapping tasks excluded

○ Our cluster server contains only 1 GPU

● Focus on 95th percentile 

○ To gain more insights on non-zero delay times

○ Using 100% of data provided no valuable insights

Current Work - Workload Trace

22
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Workload Trace Analysis
Current Work - Workload Trace
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Alibaba 
Trace

Helios 
Trace

Count 1,669,790 1,112,131

Q1 67 2

Median 348 4

Q3 1,624 21

Max 2,786,690 4,196,357

Statistical Summary of Workload Traces

Alibaba Trace

Helios Trace
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Cluster System Configuration
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CPU 2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 
3.00GHz (10 cores)

Memory 98,304 MB (96 GB)

Disk 2 * Intel SSD DC S352- 480-GB

GPU NVIDIA Tesla P4 8GB GDDR5

OS Ubuntu 22.04.2 LTS

Our cluster system configuration

Machine Specifications of Cluster System Configuration
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GPU Applications
Current Work - Methodology
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GPU Application Domain Avg. Power 
[W]

Avg. GPU 
Util [%]

GRAM Avg. 
[GiB]

2D_CONVOLUTION Image Processing 59.05 98.10 0.60
BERT_QA_PREDICTION Natural Language 

Processing
60.73 95.05 1.29

BLACKSCHOLES Computational Finance 22.86 8.83 0.16
DISTILBERT_TRAINING Natural Language 

Processing
57.87 98.62 6.47

EUCLIDEAN_DISTANCE Mathematical 
Computation

51.08 99.33 1.64

FFT Signal Processing 55.19 99.45 4.61
GAN_MNIST_DIGITS Generative Adversarial 

Network
60.77 97.96 0.79

IMAGE_CLASSIFIER Image Classification 23.09 6.74 0.29
K_MEANS Unsupervised Learning 22.86 17.46 0.41
MATMUL Matrix Multiplication 27.85 13.06 1.36
MONTE_CARLO_PRICING Financial Simulation 43.01 98.31 3.48
SEPIA_TRANSFORMATION Image Processing 23.10 5.94 0.26

SPECTROGRAM_TRANSFORMATI
ON

Audio Processing 23.65 5.18 0.18

SIMPLE_CNN Image Recognition 42.30 97.21 2.02
GPU Applications & Avg. Statistics



April 16, 2025GPU Energy Modeling for Data CentersBrandon Ismalej, CSUN

GPU Applications

● Generative Adversarial Network 
(GAN) - A deep learning model 
used to generate synthetic images

● MNIST Digit Creation - The model 
learns to create realistic 
handwritten digits by training on 
the data

● High computational demand due 
to matrix operations for training 
deep neural networks 

Current Work - Methodology

26

Process of MNIST GAN Training / Source: Kaggle.com



April 16, 2025GPU Energy Modeling for Data CentersBrandon Ismalej, CSUN

GPU Applications
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GPU Applications

● Fast Fourier Transform (FFT) - 
Algorithm to convert time-domain 
signals into frequency components

● Applications in signal processing, audio 
analysis, image processing, & scientific 
computing

● PyTorch for GPU-based FFT 
computation

● High demand for parallel computation, 
leveraging GPU cores to speed up 
operations

Current Work - Methodology

28
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GPU Applications

● GPU-Accelerated Monte Carlo 
Simulation for Financial Option Pricing

● Estimates the net present value of an 
option by simulating thousands of 
possible future asset price paths

● Massive parallelization of 100,000+ 
Monte Carlo samples across GPU 
cores

● Random number generation and 
cumulative product operations 
performed using CUDA-accelerated 
tensor operations in PyTorch

Current Work - Methodology
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Source: Rpubs.com
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Experiment Setup
● Designed five distinct experiments to 

cover a wide range of inter-task delay 
times, using our application

● “No delays” simulates peak usage 

● Short delays simulate high-frequency task 
switching

● Longer delays reflect idle periods, like 
downtime

● Experiments yielded ~40 hours of 
second-to-second data

● Data collected with Bash scripts running in 
the background recording GPU and CPU 
metrics (e.g. temp., memory, power)

Current Work - Methodology

32

Delay Times 
(seconds)

Task Order

Exp 1 No delays Sequential, 
reverse, shuffled 

Exp 2 0 - 10 shuffled

Exp 3 1 - 20 Sequential, 
reverse, shuffled

Exp 4 1 - 30 shuffled

Exp 5 300 - 1000 shuffled

Configurations of Experiments
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Data Preprocessing

● Features extracted for duration 
of every task-active and idle 
period
○ To align with available 

features of real-world 
workloads that would be 
implemented in cloud 
simulator

Current Work - Methodology
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Data Preprocessing Method on GPU Data
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Machine Learning Algorithms

● XGBoost (eXtreme Gradient Boosting)

○ Tree boosting

○ Notable use in winning Kaggle competitions

○ High accuracy in predicting CPU temp. & GPU energy

● CatBoost (Categorical Boosting)

○ Gradient boosting

○ High accuracy in GPU energy prediction

● LightGBM (Light Gradient-Boosting Machine)

○ Gradient boosting decision tree

● Regression showed undesirable results (RMSE = ~5.0)

Current Work - Methodology

34
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Machine Learning Algorithms

● Training Features:
○ GPU GRAM Avg. [GiB]
○ GPU GRAM Max. [GiB]
○ GPU Utilization Avg. [%]

● Grid search hyperparameter tuning performed
○ Goal of improving RMSE

Current Work - Methodology
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CatBoost LightGBM XGBoost

RMSE 
Value

1.218 1.224 1.284

Initial ML training results
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Model Performance
Current Work - Results
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Best performing model - XGBoost RMSE = 1.217

RMSE improved ~5.2% after hyperparameter tuning

Best XGBoost Model Predicted vs. Actual GPU Consumption
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Next Steps

Alibaba v2020 (5 GBs)
● We used 4 files: machine spec, task, 

instance, and sensor 
Filtered out tasks missing:
● Planned VM resources
● Sensor, server information
● Task duration

Over 66 days
● 497 hosts, 325k VMs/tasks

37

Future Work

Number of tasks submitted over a day and total resource requests 
over a week 
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Summary

● Developed a GPU power prediction to utilize task-average metrics collected from GPU

● Processed Alibaba v2020 cluster trace data to integrate into GPUCloudSimPlus

● To further our study of performance-aware load balancing algorithms
○ Aimed toward energy efficiency in datacenters

Summary

38
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Future Work

● Integrate new GPU power model into modified GPUCloudSimPlus

● Model energy for servers using multi-CPUs and multi-GPUs 

● Rewrite load balancing algorithms

● Run full duration simulations

Future Work

39
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Thank You

Questions?

brandon.ismalej.671@my.csun.edu

41

Q&A

To Main Paper:
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