Predictive Energy Modeling for GPU Workloads: A Machine Learning Approach to Sustainable Data Centers

Brandon Ismalej

California State University, Northridge

University of Idaho, Graduate Seminar Series April 16, 2025

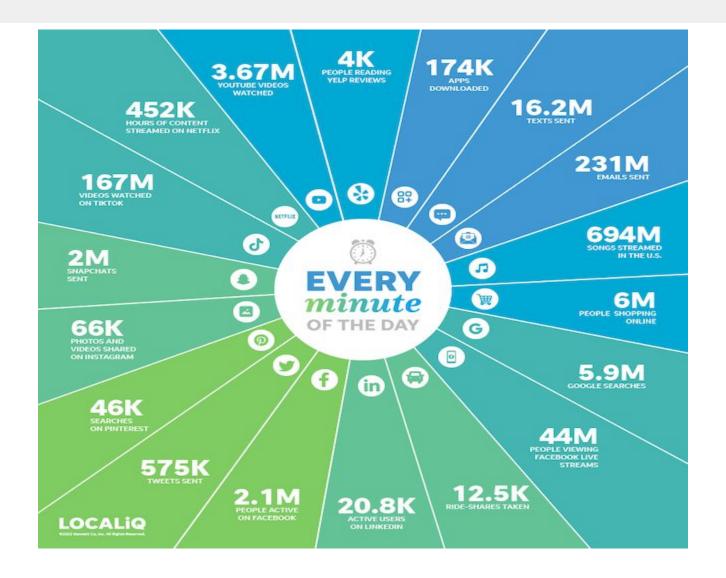
Foundation of Work

This work took place:

- CSUN's SfS2 Summer Program Funded by US Dept. of Education
- With CSUN NSF REU Site: Applying Data Science on Energy-efficient Cluster
 Systems and Applications
- Advisor: Dr. Xunfei Jiang
 - REU PI
 - SfS2 Core Team
 - Co-director of Cloud Infrastructure and Server Architecture (CISA) Lab

Outline

- Introduction
- Background & Related Work
- Methodology
- Results
- Conclusion
- Q&A



Google Data Center in Berkeley County by Wade Spees wspees@postandcourier.com

Facebook: 18 data centers

2.936 billion monthly active users (April 2022)

4 PB (4*1024 TB) of data generated per day

300PB in Hive (data warehouse)

Google: 23 data centers

Youtube: 1 billion hours of video watched per day (1000 PB/day)

621 hours of video uploaded every minute (873 TB/day)

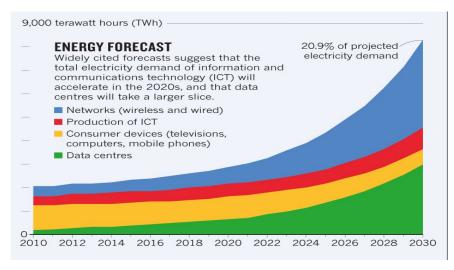
US Datacenters: 2-3% of all electricity generate

73 billion kWh in 2020 (\$0.14*73 = \$10.22 billion)

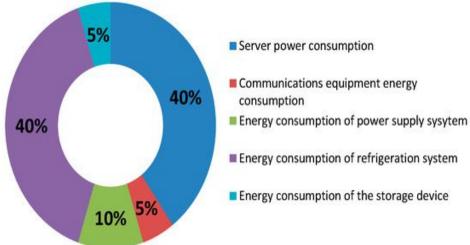
1% energy cost saving = \$0.1 billion = \$100 million

Background

Motivation:

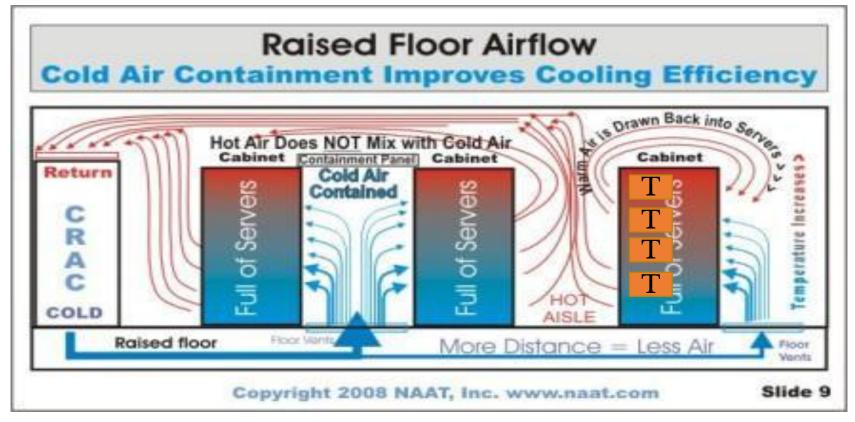


Electricity usage (TWh) of Data Centers 2010-2030 / Source: (Nature, 2018)



Summary of Energy Consumption Distribution in data centers / Source: (MDPI, 2017)

Thermal-aware energy-efficient workload scheduling



Raised Floor Air Cooling for Datacenters / Source: naat.com

T: Task CRAC: Computer Room Air Conditioner

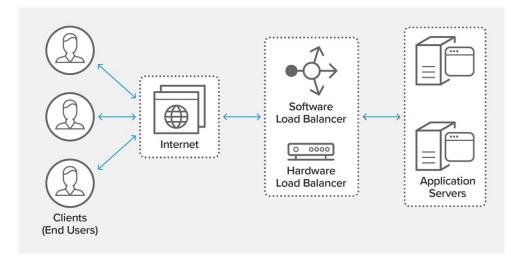
Thermal-aware energy-efficient workload scheduling

Load balancing:

- Network distributes traffic
 - \circ Client \rightarrow load balancer
 - \rightarrow server

Load balancing algorithms:

- Adaptable to changes in network traffic
- Thermal aware load balancing
- Energy efficient load balancing



Path from client to server using load balancing.

Modeling of Cluster Servers [CPU]

Previous Work: I. Nisce, X. Jiang, S. P. Vishnu, 2023

• Purpose of the Paper:

 Using ML-based approach to predict temp. consumption of computer server based on CPU-intensive workload

Data Collection:

- Whetstone benchmark to simulate CPU-intensive workload
- Stream benchmark used to collect main memory bandwidth
- Postmark used to simulate I/O-intensive workload by increasing the disk utilization

ML Algorithms for Thermal Prediction:

- XGBoost (eXtreme Gradient Boosting)
- Light Gradient Boosting
- Artificial Neural Networks

Results:

XGBoost Model to predict CPU temperature

Modeling of Cluster Servers [GPU]

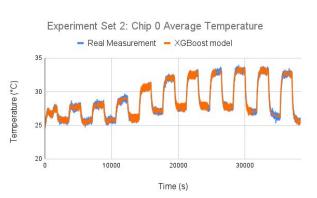
Previous works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi, 2023, 2024

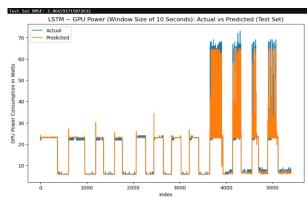
GPU-Intensive Work	Classification of Work
BERT	Large Language Model
DistilBERT	Large Language Model
Image Classification	Image Classification
Sepia Filtering	Image Filtering
Euclidean Distance	Math Heavy Operation
Blackscholes	Financial Algorithm
MonteCarlo	Statistical Inferences
Matrix Multiplication	Math Heavy Operation
K-means Clustering	Machine Learning Algorithm
Fourier Transformation	Decompose Audio Data
Spectrogram	Visualize Decomposed Audio Data

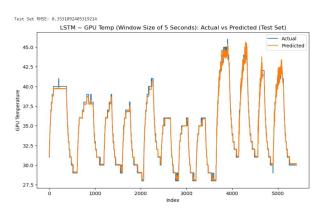
Trained Model Types			
Linear Regression			
Bayesian Ridge Regression			
XGBoost*			
LightGBM			
Basic NN for Regression			
Multi-Layer Perceptron			
RNN with Attention Mechanism			
LSTM*			

^{*} Most successful models that were tested.

Modeling of Cluster Servers







- The XGBoost model had better performance among all in CPU temperature predicting. The LSTM models had better performance predicting erratic behavior of GPU power and temperature. XGBoost models had similar levels of performance for GPU temperature.
- Will include more experiments with varied CPU/GPU utilization. Train different ML models, measure other components such as I/O, and measure server temperature and energy consumption with different workloads. Improving accuracy of GPU power model is important.

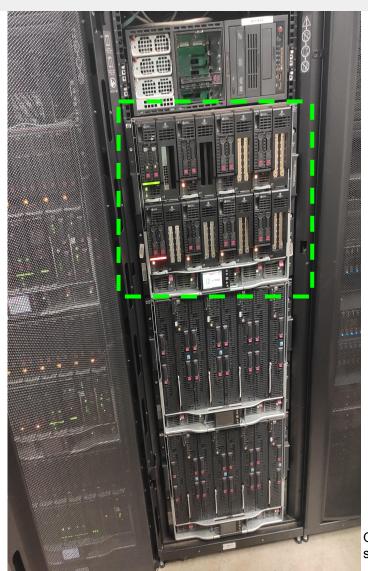
All aforementioned previous works.

Cluster System Configuration

- Located in CSUN's Main Distribution
 Frame (MDF)
- Concrete & brick, no windows
- Flat roof, 8" thick walls
- 2" interior insulation & gypsum board interior walls
- ~3,400 sq. ft. of floor space with basement for cable management
- Controlled physical access
- Availability of uninterruptible power supply
- Monitored power distribution
- Air conditioning (humidity, filtering, cooling)
- Fire suppression

CSUN MDF Server Racks

Cluster System Configuration



CPU	2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz (10 cores)
Memory	98,304 MB (96 GB)
Disk	2 * Intel SSD DC S352- 480-GB
GPU	NVIDIA Tesla P4 8GB GDDR5
OS	Ubuntu 22.04.2 LTS

Machine Specifications of Cluster System Configuration

Our cluster system configuration

Energy-efficient Placement

Problem: we don't have access to a large datacenter

Even before we create a load balancer, how would we test it?

Cloud computing simulators

- Programs that simulate real-life datacenters
- Many different choices of simulators

GPUCloudSimPlus

- Models both CPU and GPU behavior
- Easy to write a load balancer for

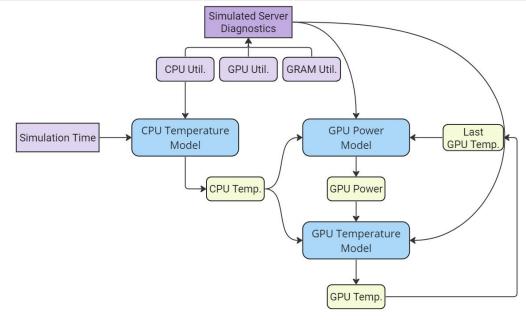
Energy-efficient Placement

Three ML models

- CPU models:
 - CPU Temperature
- GPU models:
 - GPU Power
 - GPU Temperature

Models work together

Output: GPU temperature



The three machine learning models working together to predict the GPU temperature of each individual server.

Now we can design a load balancing algorithm

Energy-efficient Placement

ThermalAwareGpu Algorithm (TAGpu)

- Goal:
 - Limit info. needed by load balancer
 - Lower temperature of each server
- Sort hosts by GPU temp every 10 seconds
- General idea of the process:
 - Use first host in queue (lowest temperature)
 - Assign X tasks to VMs in that host
 - Assume this will make the host warmer
 - Move this host to end of queue

Works: M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi, 2023, 2024

```
Algorithm 1 ThermalAwareGpu
  procedure GETVMFORCLOUDLET(CLOUDLET)
     X = 0.5 \times (numVMs / numHosts)
     if timeInSecsSinceLastSort >= 10 then
        Sort hostQueue by host GPU temperature
     end if
     count \leftarrow -1
     foundVm \leftarrow null
     while (!foundVm) \&\& (++count < numHosts) do
        host \leftarrow hostQueue.peek()
        foundVm \leftarrow First VM with resources in host
        if foundVm \neq null then
            Dequeue foundVm, enqueue to host
            Dequeue host, enqueue to hostQueue
         end if
     end while
     if foundVm.hostId \neq lastHostId then
        lastHostId \leftarrow foundVm.hostId
        host.numCloudlets \leftarrow 1
     else if + + host.numCloudlets >= X then
        Dequeue host, enqueue to hostQueue
        host.numCloudlets \leftarrow 0
     end if
     return foundVm
  end procedure
```

Goals & Approach

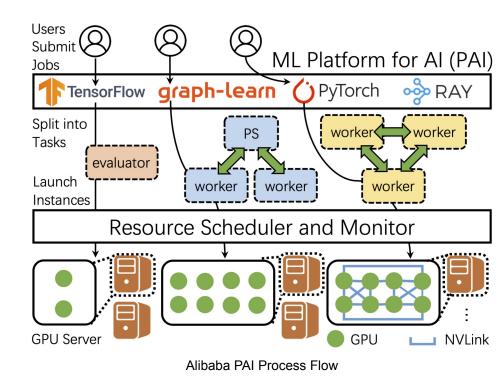
Goal of current work:

- Develop GPU power ML-model
 - Predict GPU power based on metrics gathered from each GPU task
- Training data:
 - Restricted to format of the Alibaba Real-World Cluster Trace
 - Would be data plugged into similar to enhance "aware" algorithms

Real-World Workload Trace

Alibaba 2020 Cluster Trace

- From the Alibaba Cloud Platform for Al (PAI)
 - enterprise-level ML and deep learning (DL) platform supporting a diverse range of Al-related services
- 6,500 GPUs, ~1,800 machines
- Users can submit ML jobs developed in a variety of frameworks
- Users specify needed resources upon submission (e.g. GPUs, CPUs, memory)
- Each task may have >= 1 instance, can run on multiple machines



Real-World Workload Trace

SenseTime Helios GPU Cluster Trace

- Helios: A private datacenter dedicated for DL research and production within SenseTime
- 8 independent GPU clusters
- > 12,000 GPUs total

The workload trace contains:

- 4 GPU clusters
- Earth, Saturn, Uranus, & Venus

	Venus	Earth	Saturn	Uranus	Total
CPU	Intel, 48 threads/node		Intel, 64 threads/node		-
RAM	376GB pe	r node	256GB per	r node	-
Network	IB EDR		IB FDR		-
GPU Model	Volta	Volta	Pascal & Volta	Pascal	-
# of VC's	27	25	28	25	105
# of Nodes	133	143	262	264	802
# of GPUs	1,064	1,144	2,096	2,112	6,416
# of Jobs	247k	873k	1,753k	490k	3.363k

Helios Datacenter Cluster Configurations

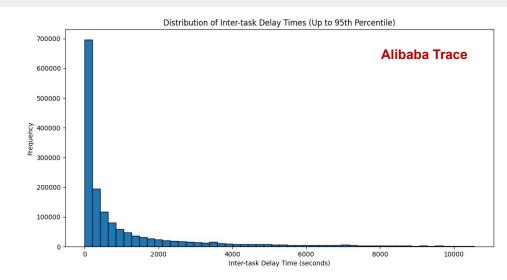
Workload Trace Analysis

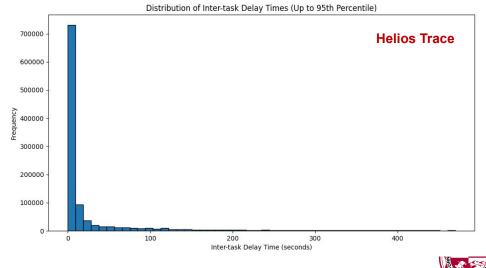
- Statistical analysis of Alibaba and Helios conducted to gain insights on task characteristics
- Overlapping tasks excluded
 - Our cluster server contains only 1 GPU
- Focus on 95th percentile
 - To gain more insights on non-zero delay times
 - Using 100% of data provided no valuable insights

Workload Trace Analysis

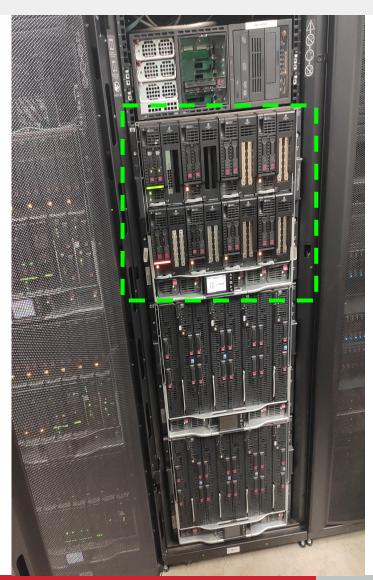
	Alibaba Trace	Helios Trace
Count	1,669,790	1,112,131
Q1	67	2
Median	348	4
Q3	1,624	21
Max	2,786,690	4,196,357

Statistical Summary of Workload Traces





Cluster System Configuration



CPU	2 * Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz (10 cores)
Memory	98,304 MB (96 GB)
Disk	2 * Intel SSD DC S352- 480-GB
GPU	NVIDIA Tesla P4 8GB GDDR5
OS	Ubuntu 22.04.2 LTS

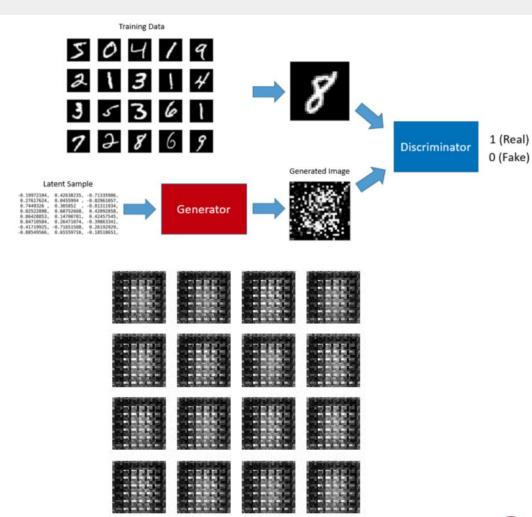
Machine Specifications of Cluster System Configuration

Our cluster system configuration

GPU Application	Domain	Avg. Power [W]	Avg. GPU Util [%]	GRAM Avg. [GiB]
2D_CONVOLUTION	Image Processing	59.05	98.10	0.60
BERT_QA_PREDICTION	Natural Language Processing	60.73	95.05	1.29
BLACKSCHOLES	Computational Finance	22.86	8.83	0.16
DISTILBERT_TRAINING	Natural Language Processing	57.87	98.62	6.47
EUCLIDEAN_DISTANCE	Mathematical Computation	51.08	99.33	1.64
FFT	Signal Processing	55.19	99.45	4.61
GAN_MNIST_DIGITS	Generative Adversarial Network	60.77	97.96	0.79
IMAGE CLASSIFIER	Image Classification	23.09	6.74	0.29
K_MEANS	Unsupervised Learning	22.86	17.46	0.41
MATMUL	Matrix Multiplication	27.85	13.06	1.36
MONTE CARLO PRICING	Financial Simulation	43.01	98.31	3.48
SEPIA_TRANSFORMATION	Image Processing	23.10	5.94	0.26
SPECTROGRAM_TRANSFORMATION	Audio Processing	23.65	5.18	0.18
SIMPLE_CNN	Image Recognition	42.30	97.21	2.02

GPU Applications & Avg. Statistics

- Generative Adversarial Network (GAN) - A deep learning model used to generate synthetic images
- MNIST Digit Creation The model learns to create realistic handwritten digits by training on the data
- High computational demand due to matrix operations for training deep neural networks

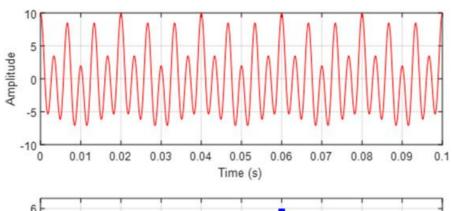


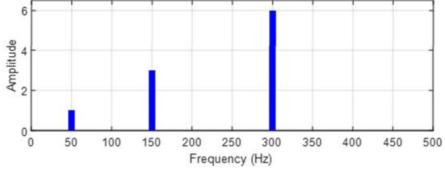
Process of MNIST GAN Training / Source: Kaggle.com

GPU Application	Domain	Avg. Power [W]	Avg. GPU Util [%]	GRAM Avg. [GiB]
2D CONVOLUTION	Image Processing	59.05	98.10	0.60
BERT_QA_PREDICTION	Natural Language Processing	60.73	95.05	1.29
BLACKSCHOLES	Computational Finance	22.86	8.83	0.16
DISTILBERT_TRAINING	Natural Language Processing	57.87	98.62	6.47
EUCLIDEAN_DISTANCE	Mathematical Computation	51.08	99.33	1.64
<mark>FFT</mark>	Signal Processing	55.19	99.45	4.61
GAN_MNIST_DIGITS	Generative Adversarial Network	60.77	97.96	0.79
IMAGE CLASSIFIER	Image Classification	23.09	6.74	0.29
K MEANS	Unsupervised Learning	22.86	17.46	0.41
MATMUL	Matrix Multiplication	27.85	13.06	1.36
MONTE CARLO PRICING	Financial Simulation	43.01	98.31	3.48
SEPIA_TRANSFORMATION	Image Processing	23.10	5.94	0.26
SPECTROGRAM_TRANSFORMATION	Audio Processing	23.65	5.18	0.18
SIMPLE CNN	Image Recognition	42.30	97.21	2.02

GPU Applications & Avg. Statistics

- Fast Fourier Transform (FFT) -Algorithm to convert time-domain signals into frequency components
- Applications in signal processing, audio analysis, image processing, & scientific computing
- PyTorch for GPU-based FFT computation
- High demand for parallel computation, leveraging GPU cores to speed up operations

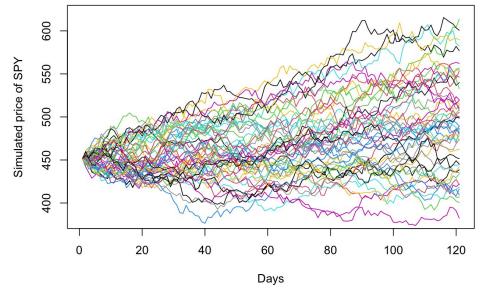




GPU Application	Domain	Avg. Power [W]	Avg. GPU Util [%]	GRAM Avg. [GiB]
2D_CONVOLUTION	Image Processing	59.05	98.10	0.60
BERT_QA_PREDICTION	Natural Language Processing	60.73	95.05	1.29
BLACKSCHOLES	Computational Finance	22.86	8.83	0.16
DISTILBERT_TRAINING	Natural Language Processing	57.87	98.62	6.47
EUCLIDEAN_DISTANCE	Mathematical Computation	51.08	99.33	1.64
FFT	Signal Processing	55.19	99.45	4.61
GAN_MNIST_DIGITS	Generative Adversarial Network	60.77	97.96	0.79
IMAGE CLASSIFIER	Image Classification	23.09	6.74	0.29
K_MEANS	Unsupervised Learning	22.86	17.46	0.41
MATMUL	Matrix Multiplication	27.85	13.06	1.36
MONTE CARLO PRICING	Financial Simulation	43.01	98.31	3.48
SEPIA_TRANSFORMATION	Image Processing	23.10	5.94	0.26
SPECTROGRAM_TRANSFORMATION	Audio Processing	23.65	5.18	0.18
SIMPLE_CNN	Image Recognition	42.30	97.21	2.02

GPU Applications & Avg. Statistics

- GPU-Accelerated Monte Carlo
 Simulation for Financial Option Pricing
- Estimates the net present value of an option by simulating thousands of possible future asset price paths
- Massive parallelization of 100,000+ Monte Carlo samples across GPU cores
- Random number generation and cumulative product operations performed using CUDA-accelerated tensor operations in PyTorch



Source: Rpubs.com

GPU Application	Domain	Avg. Power [W]	Avg. GPU Util [%]	GRAM Avg. [GiB]
2D_CONVOLUTION	Image Processing	59.05	98.10	0.60
BERT_QA_PREDICTION	Natural Language Processing	60.73	95.05	1.29
BLACKSCHOLES	Computational Finance	22.86	8.83	0.16
DISTILBERT_TRAINING	Natural Language Processing	57.87	98.62	6.47
EUCLIDEAN_DISTANCE	Mathematical Computation	51.08	99.33	1.64
FFT	Signal Processing	55.19	99.45	4.61
GAN_MNIST_DIGITS	Generative Adversarial Network	60.77	97.96	0.79
IMAGE CLASSIFIER	Image Classification	23.09	6.74	0.29
K_MEANS	Unsupervised Learning	22.86	17.46	0.41
MATMUL	Matrix Multiplication	27.85	13.06	1.36
MONTE CARLO PRICING	Financial Simulation	43.01	98.31	3.48
SEPIA_TRANSFORMATION	Image Processing	23.10	5.94	0.26
SPECTROGRAM_TRANSFORMATION	Audio Processing	23.65	5.18	0.18
SIMPLE_CNN	Image Recognition	42.30	97.21	2.02

GPU Applications & Avg. Statistics

Experiment Setup

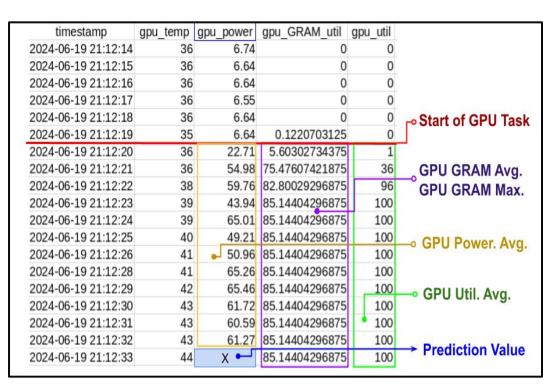
- Designed five distinct experiments to cover a wide range of inter-task delay times, using our application
- "No delays" simulates peak usage
- Short delays simulate high-frequency task switching
- Longer delays reflect idle periods, like downtime
- Experiments yielded ~40 hours of second-to-second data
- Data collected with Bash scripts running in the background recording GPU and CPU metrics (e.g. temp., memory, power)

	Delay Times (seconds)	Task Order
Exp 1	No delays	Sequential, reverse, shuffled
Exp 2	0 - 10	shuffled
Exp 3	1 - 20	Sequential, reverse, shuffled
Exp 4	1 - 30	shuffled
Exp 5	300 - 1000	shuffled

Configurations of Experiments

Data Preprocessing

- Features extracted for duration of every task-active and idle period
 - To align with available features of real-world workloads that would be implemented in cloud simulator



Data Preprocessing Method on GPU Data

Machine Learning Algorithms

- XGBoost (eXtreme Gradient Boosting)
 - Tree boosting
 - Notable use in winning Kaggle competitions
 - High accuracy in predicting CPU temp. & GPU energy
- CatBoost (Categorical Boosting)
 - Gradient boosting
 - High accuracy in GPU energy prediction
- LightGBM (Light Gradient-Boosting Machine)
 - Gradient boosting decision tree
- Regression showed undesirable results (RMSE = ~5.0)

Machine Learning Algorithms

- Training Features:
 - GPU GRAM Avg. [GiB]
 - GPU GRAM Max. [GiB]
 - GPU Utilization Avg. [%]

	CatBoost	LightGBM	XGBoost
RMSE Value	1.218	1.224	1.284

Initial ML training results

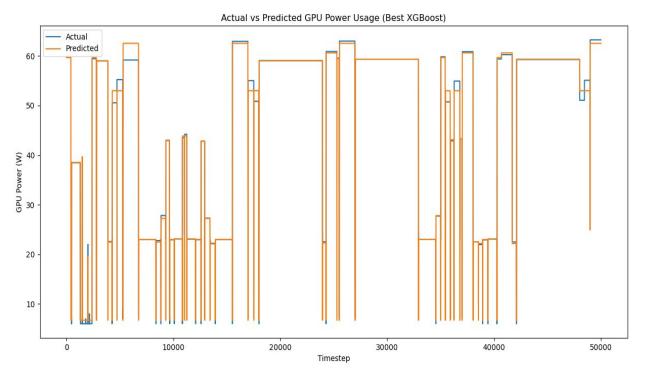
- Grid search hyperparameter tuning performed
 - Goal of improving RMSE

Model Performance

Best performing model - XGBoost

RMSE = 1.217

RMSE improved ~5.2% after hyperparameter tuning



Best XGBoost Model Predicted vs. Actual GPU Consumption

Next Steps

Alibaba v2020 (5 GBs)

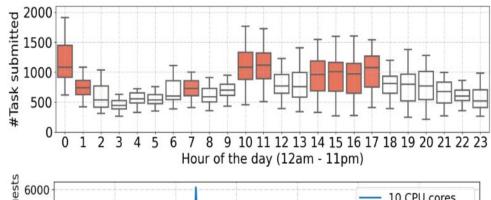
 We used 4 files: machine spec, task, instance, and sensor

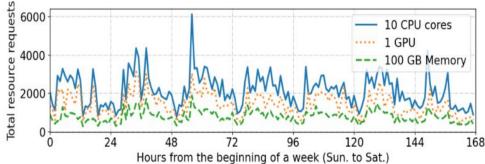
Filtered out tasks missing:

- Planned VM resources
- Sensor, server information
- Task duration

Over 66 days

497 hosts, 325k VMs/tasks





Number of tasks submitted over a day and total resource requests over a week

Summary

- Developed a GPU power prediction to utilize task-average metrics collected from GPU
- Processed Alibaba v2020 cluster trace data to integrate into GPUCloudSimPlus
- To further our study of performance-aware load balancing algorithms
 - Aimed toward energy efficiency in datacenters

Future Work

- Integrate new GPU power model into modified GPUCloudSimPlus
- Model energy for servers using multi-CPUs and multi-GPUs
- Rewrite load balancing algorithms
- Run full duration simulations

Acknowledgement

I would like to thank:

- Matthew Smith for their collaboration and work on the GPUCloudSimPlus simulator & TAGpu
- Rachel Finley for their foundation work on ML tasks and development of GPU applications
- **Dr. Xunfei Jiang** for their guidance and mentorship throughout this work

• **SfS**² for their funding on this work

Thank You

Questions?

brandon.ismalej.671@my.csun.edu

To Main Paper:

References

- M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi. "Machine Learning-based Energy-efficient Workload Management for Data Centers". 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2024, pp. 799-802, doi: 10.1109/CCNC51664.2024.10454842.
- M. Smith, L. Zhao, J. Cordova, X.-F. Jiang, and M. Ebrahimi. "Energy-efficient GPU-intensive Workload Scheduling for Data Centers". 2023 Symposium for Undergraduate Research in Data Science, Systems, and Security (REU Symposium 2023), Special Session at the 22nd International Conference on Machine Learning and Applications (ICMLA 2023), Dec 15-17, 2023, Jacksonville, FL, USA, 2023, pp. 1735-1740, doi: 10.1109/ICMLA58977.2023.00263.
- I. Nisce, X. Jiang and S. P. Vishnu, "Machine Learning based Thermal Prediction for Energy-efficient Cloud Computing,"
 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2023, pp.
 624-627, doi: 10.1109/CCNC51644.2023.10060079.
- Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, et al., "MLaaS in the wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters", 19th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 22), 2022.
- Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, "Characterization and prediction of deep learning workloads in large-scale gpu datacenters," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC '21. New York, NY, USA: Association for Computing Machinery, Nov. 2021, p. 1–15. [Online]. Available: https://dl.acm.org/doi/10.1145/3458817.3476223

References

- E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, "Recalibrating global data center energy-use estimates," Science, vol. 367, no. 6481, p. 984–986, Feb. 2020.
- J. Ni, B. Jin, B. Zhang, and X. Wang, "Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers," *Sustainability*, vol. 9, no. 4, p. 664, Apr. 2017, doi: https://doi.org/10.3390/su9040664.
- fazilbtopal, "Introduction to Generative Adversarial Networks," Kaggle.com, Jun. 21, 2019.
 https://www.kaggle.com/code/fazilbtopal/introduction-to-generative-adversarial-networks (accessed Mar. 20, 2025).
- Sreenivas Sremath Tirumala, Seyed Reza Shahamiri, Abhimanyu Singh Garhwal, and R. Wang, "Speaker identification features extraction methods: A systematic review," *Expert Systems with Applications*, vol. 90, pp. 250–271, Aug. 2017, doi: https://doi.org/10.1016/j.eswa.2017.08.015.

