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Motivation



Why Accuracy is not Enough

® Small, invisible changes can trick Al into confidently making wrong decisions.

® Even when we train Al to defend itself, high accuracy can hide deeper weaknesses.

The Central Question

Is accuracy a reliable measure of adversarial robustness or do the hidden
geometries of the network contradict accuracy?
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Background



Adversarial Attacks: Small Changes, Big Mistakes

Fast Gradient Sign

® Adversarial attacks are small, carefully crafted

changes to inputs. Method (FGSM)
® \We can alter each pixel by a small, calculated Tady = T + € -sign (V4 J (6, z,y))
amount.
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. € controls attack strength:
s Larger e = stronger but more visible attacks
o . . : . . 0 Smaller € = weaker but stealthier attacks




Adversarial Training and Robustness:

® Adversarial training teaches models to defend by exposing them to attacks during
training.
® This can improve accuracy on attacked data, but doesn't guarantee real robustness.

® Accuracy may stay high even when the model is fragile inside.
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M-PHATE & Why Geometry Matters

® Neural networks transform
inputs into internal
representations - their
“geometry”.

® We use a tool called
M-PHATE to visualize these
hidden geometries (Gigante et
al., 2019).

® |t helps us see how much the
network's understanding shifts
under attack or defense.
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Methods



Training the Networks

® 5 sets of neural networks trained on MNIST FGS: e = 2/25%

EXtreme L: g =0.125
Handwritten Digits. Low L e = 27258
® 4 networks per set: FGSM: & = 4/255
® Standard (Baseline, no adv. attack) Low ti:::;;:
® FGSM attack-trained -
® |2 attack-trained FGSH: e = 8/255
® oo attack-trained Medium R

L e = 8/255

® Each set trained on varying levels of attack
strength.

® \We recorded their accuracy on clean and
perturbed inputs, and their A accuracy.
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Looking inside the Network: M-PHATE

VANILLA Clean vs. FGSM Perturbed (2D)

® \We extracted each network’s
internal representation, its
final-layer geometry.

® \We visualized how clean and
perturbed inputs are
positioned in this space.

o If the points are far apart, oo |00
the network sees them as E .
very different; if close, they <o =: ’ faé‘zééf%o .
are similar. - Eopg's
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Looking inside the Networks: Quantifying Changes

o MMD + Hypothesis Test: Global difference in clean vs perturbed

® KNN Overlap: Proportion of perturbed points within clean k-NN
® Euclidean Distance: Per-point clean-perturbed movement
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Results: Accuracy and Perturbation

Change in Accuracy (Clean - Perturbed) Across Budgets and Variants

® | oo appears to be the

0.40{ Training Variant

most robust - low = rgsm
0.35 -2
accuracy drop. —

® | 2 appears to be the
least robust - high
accuracy drop.

A Accuracy

® Smaller drops in
accuracy suggest
more robustness,
but is that the full

Story? Perturbation Budget




Results: Geometry Contradicts Accuracy

PHATE space

Metric What it Measured Key Finding

A Accuracy Change from clean — perturbed | Loo often showed smallest drop
performance

MMD p-value Global geometry similarity in | Sometimes suggested similarity

despite large geometric shifts

kNN Recovery

Proportion of perturbed points
near their clean neighbor

“Robust” models could still have
poor neighbor recovery

Euclidean Distance

Median clean—perturbed separa-
tion (normalized)

Loo sometimes had largest separa-
tion despite high accuracy

® Accuracy alone can misrepresent robustness; small drops can hide large geometric

changes.

® Geometry-based metrics expose vulnerabilities not seen through accuracy.

e Combining accuracy and geometry can offer a fuller view of robustness.
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Conclusions & Future Work

Conclusions:
® Accuracy alone is not a reliable measure of adversarial robustness.

e Geometry-based metrics (MMD, kNN recovery, Euclidean distance) reveal hidden
vulnerabilities.

® Some models (e.g., Loo) appear robust by accuracy but show large geometric shifts.

Future Work:
® Extend geometry analysis to other architectures and datasets.
® Further examination of why this contradiction occurs.

e Examine if we can see "when" adversarial robustness occurs, or geometies shift
drastically.
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Network Architecture & Training Configurations

Experimental Setup

Network Architecture Training Configurations
® Type: Multilayer Perceptron e Standard: Baseline (no adversarial
(MLP) attack)
¢ Input: 28 x 28 (flattened image) ¢ FGSM: Attack-trained
¢ Hidden Layers: 128 — 64 neurons e |2: Attack-trained
® Qutput: 10 classes ® |oo: Attack-trained
® Loss: Cross Entropy
e Epochs: 50

® This training setup is used for all experiments, for all 5 sets of varying perturbation
budgets.

® Cross comparison is done only within each set.



Dataset Details

Property

Value / Description

Dataset Name

MNIST Handwritten Digits

Training Set Size

10,000 samples

Test Set Size

20,000 samples

Input Shape

28 x 28 grayscale images

Number of Classes

10

Preprocessing

Flattening (1D vector) of size 28 x 28 = 784




Training and Testing Accuracies & Losses

. . Test Acc| Test Acc . Test Loss| Test Loss
Budget / Variant |Train Acc (Clean) | (Perturbed) Train Loss (Clean) | (Perturbed)
Vanilla 1.000 0.897 - 0.0029 0.4461 -

Extreme Low FGSM 1.000 0.879 0.872 0.0429 0.3614 0.4587
Extreme Low L2 1.000 0.869 0.869 0.0474 0.3500 0.4350
Extreme Low LINF 1.000 0.887 0.876 0.0297 0.3596 0.3974
Low FGSM 1.000 0.902 0.853 0.0925 0.4245 0.6742
Low L2 1.000 0.901 0.838 0.0070 0.4143 0.6459
Low LINF 1.000 0.898 0.878 0.0043 0.4271 0.5222
Medium FGSM 1.000 0.901 0.804 0.0347 0.03887 0.8339
Medium L2 1.000 0.905 0.782 0.0215 0.3836 0.8544
Medium LINF 1.000 0.896 0.868 0.0053 0.3988 0.5747
High FGSM 0.924 0.900 0.720 0.2495 0.3274 0.9582
High L2 0.981 0.918 0.712 0.1117 0.2919 1.0485
High LINF 1.000 0.901 0.828 0.0114 0.3900 0.7499
Extreme High FGSM| 0.652 0.859 0.552 0.9419 0.4767 1.2358
Extreme High L2 0.678 0.898 0.494 0.8118 0.4032 1.3571
Extreme High LINF 0.996 0.917 0.760 0.0576 0.2981 0.8681
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Training Variant + Type
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fgsm_Perturbed
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MMD p-values (PHATE)

MMD p-values (PHATE) — Clean vs Perturbed by Perturbation & Ml%del
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kNN Recovery Proportions (Heatmap)

Trained Model + Attack
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kNN Recovery Proportions (Barplot)

Proportion of Perturbed Points with Clean Neighbor (k=10)

kNN Recovery Proportion — PHATE Space
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Euclidean Distance between Clean and Perturbed
Samples (Heatmap)

Normalized Median Distance (Clean vs Perturbed) in PHATE 3D Space
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Euclidean Distance between Clean and Perturbed

Samples (Boxplot)

Normalized Median Distance
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