

Adversarial Robustness and the Evolution of Latent Geometries in Neural Networks

Brandon Ismalej¹

Advisors: Alex Cloninger^{2,3}, Gal Mishne³

¹Department of Computer Science California State University, Northridge

²Department of Mathematics University of California, San Diego

³Halıcıoğlu Data Science Institute University of California, San Diego UC San Diego

Introduction

x
"panda"
57.7% confidence

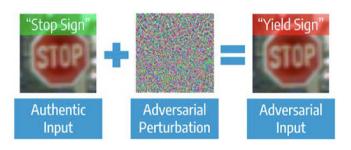
 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

Goodfellow et al., 2015

 $x + \epsilon \operatorname{sign}(\nabla_x J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"

99.3 % confidence

Introduction



STOP

Zhai et al., 2020

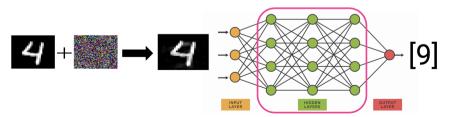
Eykholt et al., 2018

Why Accuracy is not Enough

- Small, invisible changes can trick Al into confidently making wrong decisions.
- Even when we train AI to defend itself, high accuracy can hide deeper weaknesses.

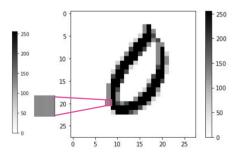
The Central Question

Is accuracy a reliable measure of adversarial robustness or do the hidden geometries of the network contradict accuracy?



Adversarial Attacks: Small Changes, Big Mistakes

- Adversarial attacks are small, carefully crafted changes to inputs.
- We can alter each pixel by a small, calculated amount.
- These attacks reveal how brittle and blind Al systems can be.



Fast Gradient Sign Method (FGSM)

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign} (\nabla_x J(\theta, x, y))$$

L_2 -Bounded

$$x_{\text{adv}} = x + \epsilon \cdot \frac{\nabla_x J(\theta, x, y)}{\|\nabla_x J(\theta, x, y)\|_2}$$

L_{∞} -Bounded

$$x_{\text{adv}} = x + \epsilon \cdot \frac{\nabla_x J(\theta, x, y)}{\|\nabla_x J(\theta, x, y)\|_{\infty}}$$

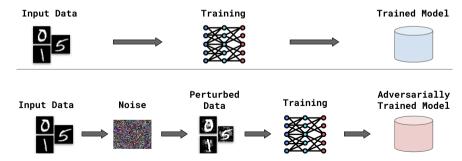
Key Insight

ϵ controls attack strength:

Larger ϵ = stronger but more visible attacks Smaller ϵ = weaker but stealthier attacks

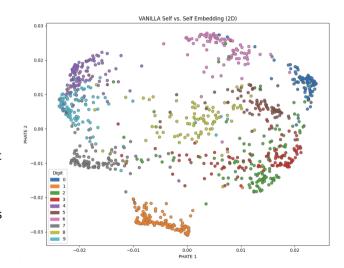
Adversarial Training and Robustness:

- Adversarial training teaches models to defend by exposing them to attacks during training.
- This can improve accuracy on attacked data, but doesn't guarantee real robustness.
- Accuracy may stay high even when the model is fragile inside.



M-PHATE & Why Geometry Matters

- Neural networks transform inputs into internal representations - their "geometry".
- We use a tool called M-PHATE to visualize these hidden geometries (Gigante et al., 2019).
- It helps us see how much the network's understanding shifts under attack or defense



Training the Networks

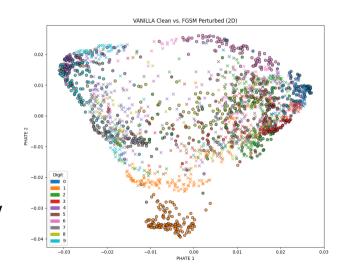
- 5 sets of neural networks trained on MNIST Handwritten Digits.
- 4 networks per set:
 - Standard (Baseline, no adv. attack)
 - FGSM attack-trained
 - L2 attack-trained
 - L∞ attack-trained
- Each set trained on varying levels of attack strength.
- We recorded their accuracy on clean and perturbed inputs, and their Δ accuracy.

C)
---	---

Extreme Low	FGSM: $\varepsilon = 2/255$ L_2 : $\varepsilon = 0.125$ $L_{\perp} \varepsilon = 2/255$
Low	FGSM: $\varepsilon = 4/255$ L_2 : $\varepsilon = 0.25$ $L_m \varepsilon = 4/255$
Medium	FGSM: $\epsilon = 8/255$ L_2 : $\epsilon = 0.5$ $L_{\perp} \epsilon = 8/255$
High	FGSM: $\epsilon = 16/255$ L_2 : $\epsilon = 1.0$ L_{ω} $\epsilon = 16/255$
Extreme High	FGSM: $\epsilon = 32/255$ L_2 : $\epsilon = 2.0$ L_2 $\epsilon = 32/255$

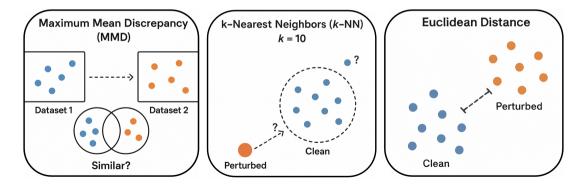
Looking inside the Network: M-PHATE

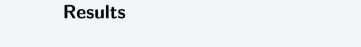
- We extracted each network's internal representation, its final-layer geometry.
- We visualized how clean and perturbed inputs are positioned in this space.
- If the points are far apart, the network sees them as very different; if close, they are similar.



Looking inside the Networks: Quantifying Changes

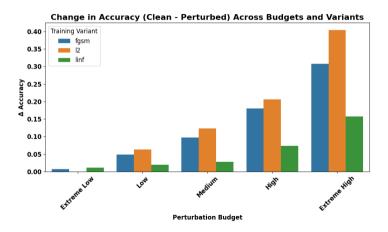
- MMD + Hypothesis Test: Global difference in clean vs perturbed
- KNN Overlap: Proportion of perturbed points within clean k-NN
- Euclidean Distance: Per-point clean-perturbed movement





Results: Accuracy and Perturbation

- L∞ appears to be the most robust - low accuracy drop.
- L2 appears to be the least robust - high accuracy drop.
- Smaller drops in accuracy suggest more robustness, but is that the full story?



Results: Geometry Contradicts Accuracy

Metric	What it Measured	Key Finding		
Δ Accuracy	Change from clean $ ightarrow$ perturbed	L_{∞} often showed smallest drop		
	performance			
MMD p-value	Global geometry similarity in	Sometimes suggested similarity		
	PHATE space	despite large geometric shifts		
kNN Recovery	Proportion of perturbed points	"Robust" models could still have		
	near their clean neighbor	poor neighbor recovery		
Euclidean Distance	Median clean-perturbed separa-	L_∞ sometimes had largest separa-		
	tion (normalized)	tion despite high accuracy		

- Accuracy alone can misrepresent robustness; small drops can hide large geometric changes.
- Geometry-based metrics expose vulnerabilities not seen through accuracy.
- Combining accuracy and geometry can offer a fuller view of robustness.

Conclusions & Future Work

Conclusions:

- Accuracy alone is not a reliable measure of adversarial robustness.
- Geometry-based metrics (MMD, kNN recovery, Euclidean distance) reveal hidden vulnerabilities.
- Some models (e.g., $L\infty$) appear robust by accuracy but show large geometric shifts.

Future Work:

- Extend geometry analysis to other architectures and datasets.
- Further examination of why this contradiction occurs.
- Examine if we can see "when" adversarial robustness occurs, or geometies shift drastically.

Thank you!

Questions?

brandon.ismalej.671@my.csun.edu

Acknowledgments

I would like to thank my PI's: Alex Cloninger and Gal Mishne.

Special thanks to my mentor, Mikio Aoi, for their invaluable guidance and support.

I am also grateful to my peers here for their encouragement and camaraderie.

UC San Diego

References

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., and Song, D. (2018).

Robust physical-world attacks on deep learning models.

(arXiv:1707.08945).

arXiv:1707.08945 [cs].

Gigante, S., Charles, A. S., Krishnaswamy, S., and Mishne, G. (2019).

Visualizing the phate of neural networks.

In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Goodfellow, I., Shlens, J., and Szegedy, C. (2015).

Explaining and harnessing adversarial examples.

In International Conference on Learning Representations.

Zhai, J., Shen, W., Singh, I., Wanyama, T., and Gao, Z. (2020).

A review of the evolution of deep learning architectures and comparison of their performances for histopathologic cancer detection.

Procedia Manufacturing, 46:683-689.

Network Architecture & Training Configurations

Experimental Setup

Network Architecture	Training Configurations		
• Type: Multilayer Perceptron (MLP)	• Standard: Baseline (no adversarial attack)		
• Input: 28×28 (flattened image)	• FGSM: Attack-trained		
• Hidden Layers: 128 → 64 neurons	• L2 : Attack-trained		
• Output: 10 classes	• L ∞: Attack-trained		
• Loss: Cross Entropy			
• Epochs: 50			

- This training setup is used for all experiments, for all 5 sets of varying perturbation budgets.
- Cross comparison is done only within each set.

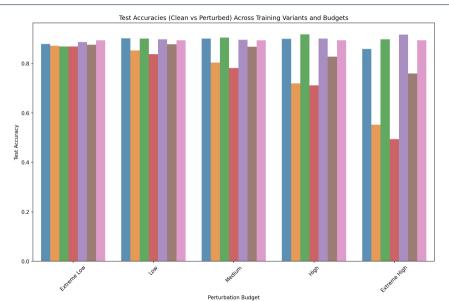
Dataset Details

Property	Value / Description
Dataset Name	MNIST Handwritten Digits
Training Set Size	10,000 samples
Test Set Size	20,000 samples
Input Shape	28 imes 28 grayscale images
Number of Classes	10
Preprocessing	Flattening (1D vector) of size $28 \times 28 = 784$

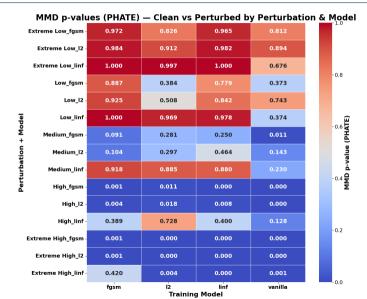
Training and Testing Accuracies & Losses

Budget / Variant	T	Test Acc	Test Acc	Train Loss	Test Loss	Test Loss
	Train Acc	(Clean)	(Perturbed)		(Clean)	(Perturbed)
Vanilla	1.000	0.897	_	0.0029	0.4461	_
Extreme Low FGSM	1.000	0.879	0.872	0.0429	0.3614	0.4587
Extreme Low L2	1.000	0.869	0.869	0.0474	0.3500	0.4350
Extreme Low LINF	1.000	0.887	0.876	0.0297	0.3596	0.3974
Low FGSM	1.000	0.902	0.853	0.0925	0.4245	0.6742
Low L2	1.000	0.901	0.838	0.0070	0.4143	0.6459
Low LINF	1.000	0.898	0.878	0.0043	0.4271	0.5222
Medium FGSM	1.000	0.901	0.804	0.0347	0.03887	0.8339
Medium L2	1.000	0.905	0.782	0.0215	0.3836	0.8544
Medium LINF	1.000	0.896	0.868	0.0053	0.3988	0.5747
High FGSM	0.924	0.900	0.720	0.2495	0.3274	0.9582
High L2	0.981	0.918	0.712	0.1117	0.2919	1.0485
High LINF	1.000	0.901	0.828	0.0114	0.3900	0.7499
Extreme High FGSM	0.652	0.859	0.552	0.9419	0.4767	1.2358
Extreme High L2	0.678	0.898	0.494	0.8118	0.4032	1.3571
Extreme High LINF	0.996	0.917	0.760	0.0576	0.2981	0.8681

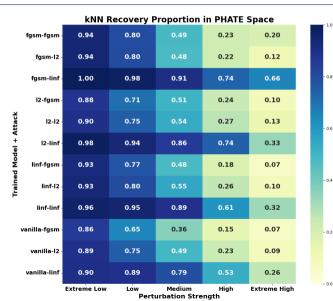
All Accuracies



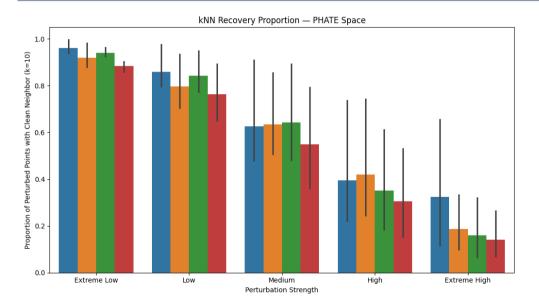
MMD p-values (PHATE)



kNN Recovery Proportions (Heatmap)



kNN Recovery Proportions (Barplot)



Euclidean Distance between Clean and Perturbed Samples (Heatmap)

Normalized Median Distance (Clean vs Perturbed) in PHATE 3D Space 0.155 0.199 0.269 0.331 0.085 0.0940.116 0.140 **Training Model** 0.093 0.093 0.064 0.125 0.127 0.213 0.087 0.126 0.135 0.168 0.196 0.099 0.114 0.150 0.162 0.222 0.253 0.053 0.074 0.085 Extreme High-fgsm

Perturbation Strength + Attack (sorted by vanilla)

Euclidean Distance between Clean and Perturbed Samples (Boxplot)

