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Motivation



Why Accuracy is not Enough

• Small, invisible changes can trick AI into confidently making wrong decisions.
• Even when we train AI to defend itself, high accuracy can hide deeper weaknesses.

The Central Question
Is accuracy a reliable measure of adversarial robustness or do the hidden

geometries of the network contradict accuracy?
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Background



Adversarial Attacks: Small Changes, Big Mistakes

• Adversarial attacks are small, carefully crafted
changes to inputs.

• We can alter each pixel by a small, calculated
amount.

• These attacks reveal how brittle and blind AI
systems can be.

Fast Gradient Sign
Method (FGSM)
xadv = x + ϵ · sign (∇xJ(θ, x, y))

L2-Bounded
xadv = x + ϵ · ∇xJ(θ,x,y)

∥∇xJ(θ,x,y)∥2

L∞-Bounded
xadv = x + ϵ · ∇xJ(θ,x,y)

∥∇xJ(θ,x,y)∥∞

Key Insight
ϵ controls attack strength:
Larger ϵ = stronger but more visible attacks
Smaller ϵ = weaker but stealthier attacks
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Adversarial Training and Robustness:

• Adversarial training teaches models to defend by exposing them to attacks during
training.

• This can improve accuracy on attacked data, but doesn’t guarantee real robustness.
• Accuracy may stay high even when the model is fragile inside.
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M-PHATE & Why Geometry Matters

• Neural networks transform
inputs into internal
representations - their
“geometry”.

• We use a tool called
M-PHATE to visualize these
hidden geometries (Gigante et
al., 2019).

• It helps us see how much the
network’s understanding shifts
under attack or defense.
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Methods



Training the Networks

• 5 sets of neural networks trained on MNIST
Handwritten Digits.

• 4 networks per set:
• Standard (Baseline, no adv. attack)
• FGSM attack-trained
• L2 attack-trained
• L∞ attack-trained

• Each set trained on varying levels of attack
strength.

• We recorded their accuracy on clean and
perturbed inputs, and their ∆ accuracy.
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Looking inside the Network: M-PHATE

• We extracted each network’s
internal representation, its
final-layer geometry.

• We visualized how clean and
perturbed inputs are
positioned in this space.

• If the points are far apart,
the network sees them as
very different; if close, they
are similar.
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Looking inside the Networks: Quantifying Changes

• MMD + Hypothesis Test: Global difference in clean vs perturbed
• KNN Overlap: Proportion of perturbed points within clean k-NN
• Euclidean Distance: Per-point clean-perturbed movement
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Results



Results: Accuracy and Perturbation

• L∞ appears to be the
most robust - low
accuracy drop.

• L2 appears to be the
least robust - high
accuracy drop.

• Smaller drops in
accuracy suggest
more robustness,
but is that the full
story?
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Results: Geometry Contradicts Accuracy

Metric What it Measured Key Finding
∆ Accuracy Change from clean → perturbed

performance
L∞ often showed smallest drop

MMD p-value Global geometry similarity in
PHATE space

Sometimes suggested similarity
despite large geometric shifts

kNN Recovery Proportion of perturbed points
near their clean neighbor

“Robust” models could still have
poor neighbor recovery

Euclidean Distance Median clean–perturbed separa-
tion (normalized)

L∞ sometimes had largest separa-
tion despite high accuracy

• Accuracy alone can misrepresent robustness; small drops can hide large geometric
changes.

• Geometry-based metrics expose vulnerabilities not seen through accuracy.
• Combining accuracy and geometry can offer a fuller view of robustness.
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Conclusions & Future Work



Conclusions & Future Work

Conclusions:
• Accuracy alone is not a reliable measure of adversarial robustness.
• Geometry-based metrics (MMD, kNN recovery, Euclidean distance) reveal hidden

vulnerabilities.
• Some models (e.g., L∞) appear robust by accuracy but show large geometric shifts.

Future Work:
• Extend geometry analysis to other architectures and datasets.
• Further examination of why this contradiction occurs.
• Examine if we can see "when" adversarial robustness occurs, or geometies shift

drastically.
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Thank you!
Questions?

brandon.ismalej.671@my.csun.edu
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Appendix



Network Architecture & Training Configurations
Experimental Setup

Network Architecture Training Configurations

• Type: Multilayer Perceptron
(MLP)

• Input: 28 × 28 (flattened image)
• Hidden Layers: 128 → 64 neurons
• Output: 10 classes
• Loss: Cross Entropy
• Epochs: 50

• Standard: Baseline (no adversarial
attack)

• FGSM: Attack-trained
• L2: Attack-trained
• L∞: Attack-trained

• This training setup is used for all experiments, for all 5 sets of varying perturbation
budgets.

• Cross comparison is done only within each set.
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Dataset Details

Property Value / Description
Dataset Name MNIST Handwritten Digits
Training Set Size 10,000 samples
Test Set Size 20,000 samples
Input Shape 28 × 28 grayscale images
Number of Classes 10
Preprocessing Flattening (1D vector) of size 28 × 28 = 784
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Training and Testing Accuracies & Losses

Budget / Variant Train Acc Test Acc
(Clean)

Test Acc
(Perturbed) Train Loss Test Loss

(Clean)
Test Loss

(Perturbed)
Vanilla 1.000 0.897 – 0.0029 0.4461 –

Extreme Low FGSM 1.000 0.879 0.872 0.0429 0.3614 0.4587
Extreme Low L2 1.000 0.869 0.869 0.0474 0.3500 0.4350

Extreme Low LINF 1.000 0.887 0.876 0.0297 0.3596 0.3974
Low FGSM 1.000 0.902 0.853 0.0925 0.4245 0.6742

Low L2 1.000 0.901 0.838 0.0070 0.4143 0.6459
Low LINF 1.000 0.898 0.878 0.0043 0.4271 0.5222

Medium FGSM 1.000 0.901 0.804 0.0347 0.03887 0.8339
Medium L2 1.000 0.905 0.782 0.0215 0.3836 0.8544

Medium LINF 1.000 0.896 0.868 0.0053 0.3988 0.5747
High FGSM 0.924 0.900 0.720 0.2495 0.3274 0.9582

High L2 0.981 0.918 0.712 0.1117 0.2919 1.0485
High LINF 1.000 0.901 0.828 0.0114 0.3900 0.7499

Extreme High FGSM 0.652 0.859 0.552 0.9419 0.4767 1.2358
Extreme High L2 0.678 0.898 0.494 0.8118 0.4032 1.3571

Extreme High LINF 0.996 0.917 0.760 0.0576 0.2981 0.8681
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All Accuracies



MMD p-values (PHATE)



kNN Recovery Proportions (Heatmap)



kNN Recovery Proportions (Barplot)



Euclidean Distance between Clean and Perturbed
Samples (Heatmap)



Euclidean Distance between Clean and Perturbed
Samples (Boxplot)
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