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Forecasting Runner Injuries from Wearable Data using Recurrent Neural Networks
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Wearable sensors continuously capture training Neural Network Training: e Injury prediction from training data remains a

load and physiological patterns in athletes. e Bidirectional Gated Recurrent Unit (GRU) (Figure 3) challenging, highly imbalanced classification task
Although wearable sensors provide rich daily e Focal Loss function used
data, identifying early indicators of injury risk
remains a challenge.

e The Bidirectional GRU achieved strong accuracy
but limited recall and ROC-AUC

® Deep recurrent models can serve as viable
foundations for practical and informative injury
forecasting pipelines, as shown in Figure 4

o To mitigate effects of class imbalance

O Prioritizes learning from rare cases by penalizing

In this project, we apply deep recurrent neural , S o S
misclassification of the minority class (injuries)

networks to forecast runner injuries from
multivariate training load sequences.
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collected via GPS watches, heart rate monitors,
and subjective assessments

Future Work

e |Integrate VAE- or GAN-based data augmentation
to improve minority class representation

® |nvestigate multi-week contextual modeling and
interpretability metrics for practical deployment

Current Results:

® Achieved 92.1% accuracy & 0.569 ROC-AUC on

e Training data included distance, duration, intensity highly imbalanced runner-injury dataset (Table 1)

zones (Z1-75), and engineered ACWR (Figure 1)

e Rolling 7-day sequences used to predict next-day
injury, shown in Figure 2

Distribution of Objective ACWR on the First Day of Injury

® Precision-recall performance remains low due to
the extreme class imbalance; PR-AUC ~0.025.

e Performance remains below prior work,
emphasizing the challenge of injury prediction.
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Table 1: Results Compared with Relevant Literature System.

Figure 2: 7 Day Sequences of Training Data for Forecasting Next-Day Injury




