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Accuracy Comparison
● Radau Numerical solver is using:

○ Relative tolerance: 10
○ Absolute tolerance: 10

● MLP’s accuracy depends on loss
○ Loss can be inaccurate because MLP could learn different solution to the 

differential equation then the one we want it to learn
○ Highly inaccurate for gamma values above 1.01

● KAN’s accuracy depends on loss
○ Similar to MLP, the loss can be inaccurate in describing the accuracy of the 

solution that KAN came up with
○ Highly inaccurate for gamma values above 1.01

Discussion 
● MLP and KAN struggled with accuracy for chaotic systems, especially for gamma 

values above 1.01, likely due to limitations in their loss functions and 
hyperparameter sensitivity. 

● These findings suggest that traditional numerical solvers currently offer more 
reliable solutions for chaotic differential equations, though advancements in PINNs, 
such as systematic hyperparameter tuning and new architectures, may improve their 
performance in the future.

Methodology

Background
Damped Driven Pendulum:
● Classical example of a chaotic system, 

characterized by non-linear dynamics
● Governed by differential equations that 

describe its motion under external periodic 
driving forces and damping

Physics-Informed Neural Networks (PINNs):
● Incorporates physical laws (e.g. diff. eq.’s) into 

the loss function of neural networks
● Potential to model complex systems with 

reduced computational costs and higher 
generalization

Objectives
Main Goal: To compare the performance of KAN 
and MLP-based PINNs against traditional 
numerical solvers in modeling the dynamics of 
the chaotic damped driven pendulum

● Validate claim that KANs outperform MLPs 
in terms of accuracy and interpretability [1]

Figure 2: Comparison of MLP & KAN [1]

● System Studied: Main focus on damped driven pendulum with γ = 0.8
● Numerical solution benchmark generated using SciPy’s ODE Solver
● Modelling approach: Implemented PINNs with MLP and KAN architectures

○ As shown in Fig. 1
● Training PINNs using loss function shown in Eq. 2: 

Experimental Setup Results

Conclusions and Future Work
Summary

● MLP and KAN neural network architectures aren’t as accurate and fast as numerical 
solvers for nonlinear differential equations. KAN was found to be almost same as 
MLP in solving nonlinear equations. MLP was only better in terms of speed of 
training.

● This work provides limited evidence in favor of the claim that KANs can 
outperform MLPs [1].

Implications

● No advantage was found in using KAN and MLP to solve nonlinear differential 
equations instead of numerical solvers, especially in chaotic regime.

Future Work

● Systematic tuning of hyper parameters could make neural networks better at 
approximating the solutions

● MultKAN is KAN 2.0 that introduces multiplication layers that could help KAN be 
able to better approximate the solution of nonlinear differential equations [2]. 

Figure 1: Image of Basic Pendulum System

Numerical Solver (SciPy)
 In our setup, we benchmarked six ODE solvers from SciPy, aiming to balance 
computational speed and accuracy. The Radau method emerged as our preferred choice 
due to its optimal trade-off between these factors.
Why Radau?
● Balanced Performance: Offers a good compromise between speed and accuracy.
● Stiff Problem Handling: Particularly effective for stiff ODEs.
● Global Accuracy: Maintains high accuracy across diverse problems.

Multilayer Perceptron (MLP)
Theoretical Foundations: Based on the Universal Approximation Theorem.
● Single hidden-layer MLP can approximate any continuous function with enough neurons

Model Architecture:
● MLP Layers: [1, 50, 50, 1]

○ 1D input & output
○ 2 layers of 50 hidden neurons/layer

Training Details:
●  γ = 0.8
● Time = 0 to 6s
● 1200 training pts.
● Optimizer: Adam
● Learning Rate: 1e-3
● Epochs: 30,000

Results for MLP::
● Boundary loss: 0.0001
● Physics loss: 0.0001
● Total Loss: 0.0003

Kolmogorov Arnold Network (KAN)

Theoretical Foundations: Based on the Kolmogorov-Arnold Representation Theorem

● Represents multivariate functions as a sum of univariate functions

Model Architecture:

● KAN Layers: [1, 8, 8, 8, 1]
○ 1D input & output
○ 3 layers of 8 hidden neurons/layer

● Cubic Spline: k = 3
● 15 grid intervals

Training Details: 
● γ = 0.8
● Time = 0s to 6s 
● 1,600  training pts.
● Optimizer: Adam
● Learning Rate: 5e-3
● Epochs: 1,000

Results for KAN:
● Boundary Loss: 0.0002
● Physics Loss: 0.0045
● Total Loss: 0.0047

Observations: 
● Rapid Initial Accuracy: Quickly achieves a 

high level of accuracy in early stages of 
training

● Progress Plateau: Following initial training, 
progress slows dramatically, increasing 
computational costs

Equation 1: Damped Driven Pendulum 

Equation 2: Total Loss Function 

Equation 3: Physics Loss Function Equation 4: Boundary Loss Function

Acknowledgement

Observations: 
● Steady Accuracy increase: Steadily 

improves and achieves high level of 
accuracy over time
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Figure 6: Final KAN vs. Numerical Solution Comparison

Figure 5: Final MLP vs. Numerical Solution Comparison

Figure 3: Radau equation 2
Figure 4: Radau equation 2
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