

# Sleep Stage Classification from Wearable Sensor Data: Toward Transparent and Accessible Health Al







Brandon Ismalej and Dr. Xunfei Jiang Department of Computer Science California State University, Northridge

# Introduction

#### **Context & Motivation:**

- Essential Role of Sleep: Supports cognitive function, physical health, and overall well-being
- Clinical Limitations: Polysomnography is accurate but expensive and inconvenient (labor-intensive, clinical setting)
- Wearable Potential: Smartwatches and non-invasive sensors offer continuous, real-world data

# Goals & Objectives:

- Develop Explainable Machine Learning Models: Classify sleep stages from wearable signals with known algorithm and transparent data use
- Improvable Accessibility: Provide a cost-effective, user-friendly approach to personalized health insights through an open-source platform

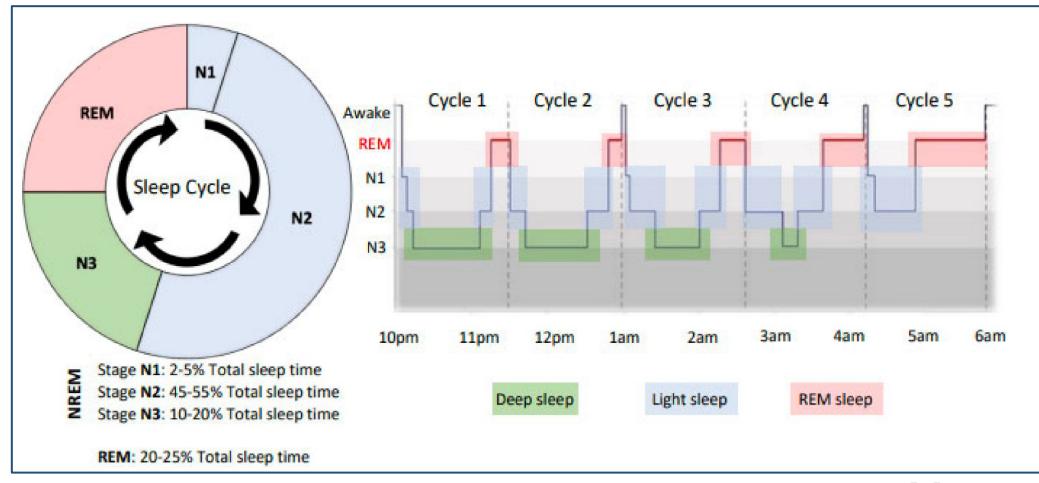
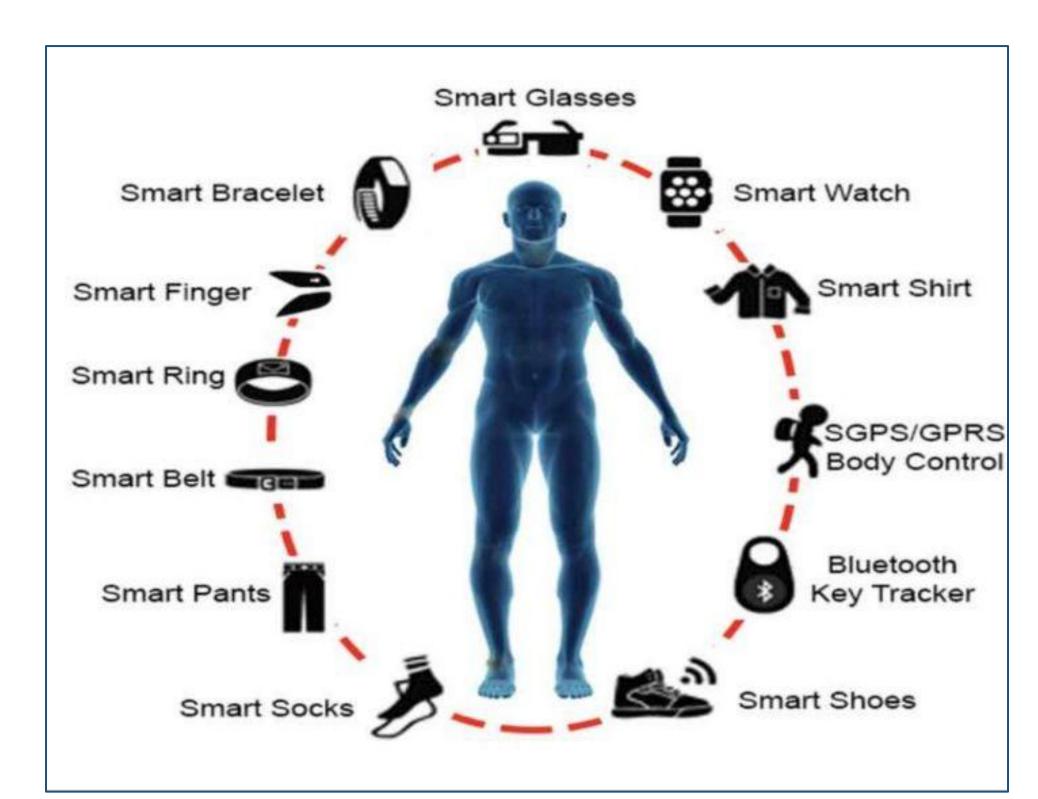


Figure 1: Hypnogram Depicting Sleep Stage Distribution Across Cycles [1]



#### **BORACLE:**

- Boracle Platform [4]: This project contributes to Boracle, an open-source cyber-physical system for collecting, standardizing, and analyzing health data from wearables.
- Transparent Health AI: Aligned with Boracle's mission to make ML-driven health insights more accessible and understandable by enabling algorithm transparency and user control.

# Methodology



Figure 2: Empatica E4 Wristband with Core Specifications [2]

#### Dataset Overview:

- DREAMT: Dataset for Real-time sleep stage EstimAtion using Multisensor wearable Technology [3]
- 100 individuals recruited from Duke University Health System Sleep Disorder Lab
- Wearable (Empatica E4) signals:
- Raw: Blood Volume Pulse (BVP), Accelerometry (ACC\_X,Y,Z), Electrodermal Activity (EDA), Skin Temperature (TEMP)
- Derived: Heart Rate (HR), Inter-Beat Interval (IBI)
- Sleep Stage Labels: Technician-annotated (PSG) every 30 seconds (W, N1, N2, N3, R)
- Chosen for its high-accuracy, sensor availability and signal collection capability

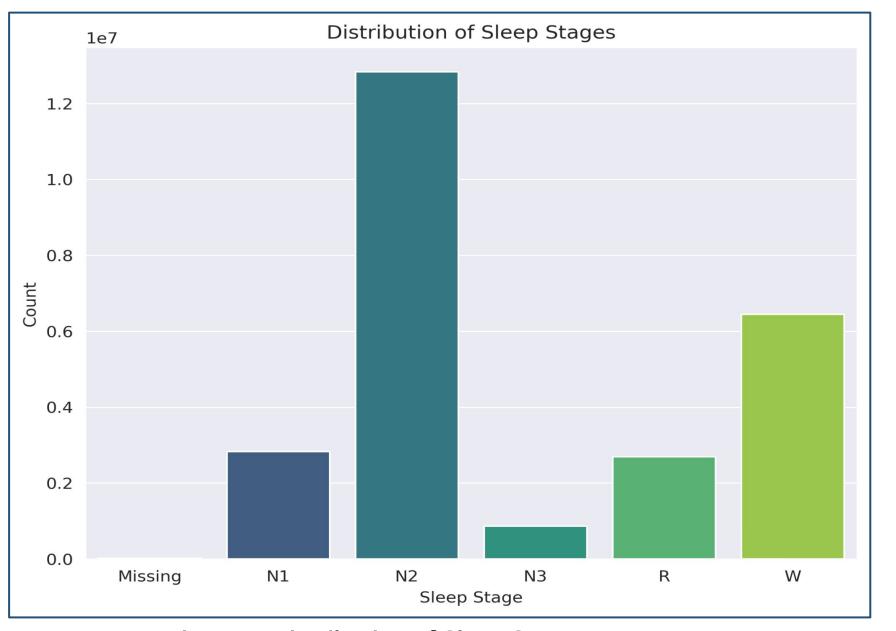


Figure 3: Distribution of Sleep Stage Frequency

# **Exploratory Data Analysis (EDA) Insights:**

- Sufficient Data Per Participant: ~7 hours of data/participant
- Natural Class Imbalance: N2 is the most frequent stage, N3 is underrepresented, potentially impacting model performance

#### Data Preprocessing:

- Filter out preparation (P) stages
- Raw signals collected at 64 HZ:
- Downsample to 10 Hz for full model
- Downsample to 1 Hz for reduced model
- 4th-order Butterworth low-pass filter to BVP, ACC, EDA, and TEMP to remove high-frequency noise
- Majority voting with smoothing over downsampled windows to maintain sleep stage transitions

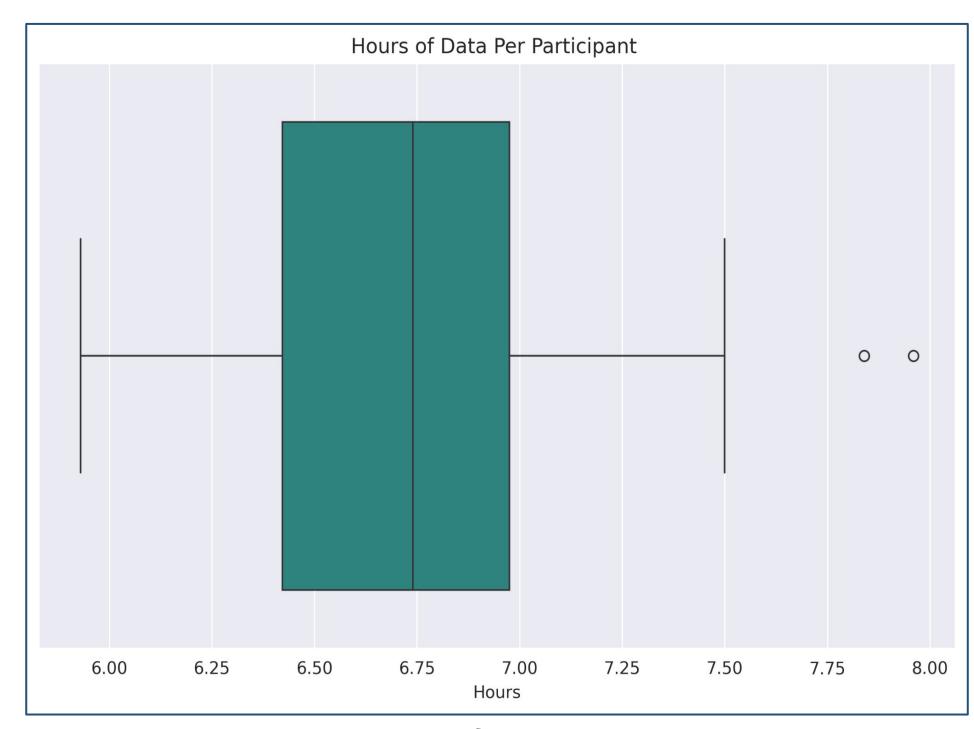


Figure 4: Hours of Data Per Participant

# Neural Network Development & Training:

- Neural Network Architectures
- Long-Short Term Memory (LSTM)
- Convolutional Neural Network (CNN)
- Training Setup:
- Train-Test Split of Data: 70% train, 15% validation, 15% test
- Class Imbalance Mitigation
- Focal Loss
- Class weighting
- Full-Feature Models:
- BVP, ACC\_X,Y,Z, EDA, TEMP, HR, IBI
- Reduced-Feature Models:
- HR, IBI, ACC\_X,Y,Z

#### Results

#### Full-Feature Model:

- LSTM: Sequences of 10 seconds at 10 Hz
- CNN:Sequences of 10 seconds at 10 Hz

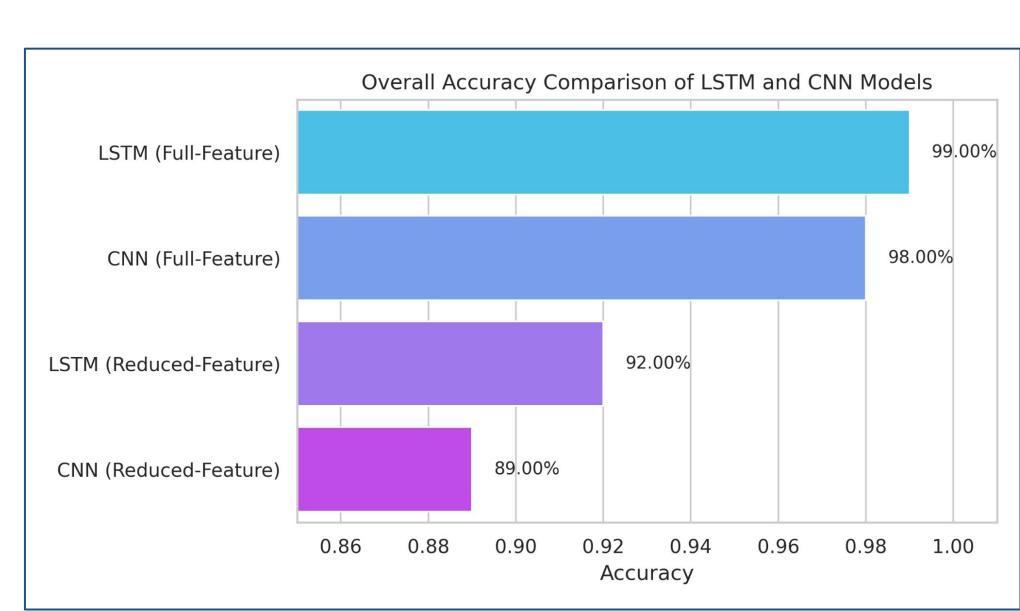


Figure 4: Overall Accuracy Comparison of LSTM & CNN

#### Reduced-Feature Model:

- LSTM: Sequences of 30 seconds at 1 Hz
- CNN: Sequences of 30 seconds at 1 Hz

|      | Precision | Recall | F1-Score |      | Precision | Recall | F1-Score |
|------|-----------|--------|----------|------|-----------|--------|----------|
| Wake | 0.99      | 0.99   | 0.99     | Wake | 0.99      | 0.93   | 0.96     |
| N1   | 0.98      | 0.99   | 0.98     | N1   | 0.88      | 0.89   | 0.88     |
| N2   | 1.00      | 1.00   | 1.00     | N2   | 0.93      | 0.93   | 0.93     |
| N3   | 0.90      | 0.96   | 0.93     | N3   | 0.59      | 0.84   | 0.70     |
| REM  | 1.00      | 1.00   | 1.00     | REM  | 0.95      | 0.91   | 0.93     |

Table 1, 2: Classification Report of LSTM; Full-Feature (left), Reduced Feature (right)

|      | Precision | Recall | F1-Score |      | Precision | Recall | F1-Score |
|------|-----------|--------|----------|------|-----------|--------|----------|
| Wake | 0.99      | 0.98   | 0.98     | Wake | 0.96      | 0.91   | 0.94     |
| N1   | 0.91      | 0.93   | 0.92     | N1   | 0.83      | 0.87   | 0.85     |
| N2   | 0.97      | 0.98   | 0.98     | N2   | 0.91      | 0.93   | 0.92     |
| N3   | 0.72      | 0.83   | 0.77     | N3   | 0.75      | 0.81   | 0.78     |
| REM  | 0.96      | 0.96   | 0.96     | REM  | 0.94      | 0.92   | 0.93     |

Table 3, 4: Classification Report of CNN; Full-Feature (left), Reduced Feature (right)

# Conclusion & Future Work

 Our methodology effectively classifies sleep stages using smartwatch sensor data, achieving high classification performance with few, accessible features

#### **Future Work:**

- Explore domain adaptation techniques to improve robustness across different wearable devices
- Deployment of this model to the Boracle Platform for use with user wearable devices

#### References

[1] M. W. Driller et al., "Pyjamas, Polysomnography and Professional Athletes: The Role of Sleep Tracking Technology in Sport," Sports, vol. 11, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/sports11010014 [2] "E4 wristband technical specifications," Empatica Support, 2025. https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications

(accessed Mar. 11, 2025). [3] K. Wang, J. Yang, A. Shetty, and J. Dunn, "DREAMT: Dataset for Real-time sleep stage EstimAtion using

Multisensor wearable Technology," Physionet.org, Feb. 05, 2025. https://physionet.org/content/dreamt/2.0.0/ (accessed Mar. 26, 2025). [4] C. A. Dimalanta, M. Smith, K. Bonakdar, X. Jiang, N. Ho, and T. Dung, "Poster - Boracle: An Open Data

Platform For Health Condition Prognostics," 2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 200–201, Jun. 2024, doi: https://doi.org/10.1109/chase60773.2024.00038.