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Introduction Physical Activity Classification Fatigue Prediction
e Objectives: Develop Intelligent Algorithms to analyze and detect healthcare e Granularity: Data was preprocessed, cleaned, and resampled into 5-minute e DUO-GAIT provides ACC + GYRO readings across various body locations
conditions using various machine learning (ML) models sliding windows, resulting in 358 labeled segments; sample in Fig. 2 o Utilized the left foot sensor located above the foot instep
e Current Research Topics: e Labeling Approach — Rule-based logic using heart rate and step count e Preprocessing:
o Physical Activity Classification thresholds was used to label windows as: o 3rd order Butterworth filter to smooth out sensor noise with 10 Hz cutoff freq
© Runner Injury Forecasting o Rest (e.g., HR <70 bpm, 0 steps) o Padded stride windows to consistent length of 150 samples
o Fatigue Prediction o Walk (e.g., HR 70-110 bpm, 30-80 steps) o Standard scale each feature channel independently based on training set
e Prior Research Topics: o Run (e.g., HR 120-160 bpm, high step count & energy) e Custom DeepConvLSTM Architecture with Self-Attention Mechanism
o Detecting Heartbeat Irregularities (Arrhythmia) using ECG Data o Cycle (e.g., HR 100-140 bpm, low step count, distance involved) o Single Head Dot-Product Self-Attention to identify key time steps, shown in Fig. 5
o Sleep Stage Classification and Stress Level Detection e Results: e Supervised Learning Results
o Injury Forecasting for Soccer Athletes Model Accuracy Macro F1-Score 0 91% F1-Score using 1D-CNN Architecture
Random Forest 96Y% 0.78 o 97% F1-Score using DeepConvLSTM with Self-Attention Architecture
- - Vector Mach B 053 o Class inference shown in Fig. 3
Data Collection upport Vector Machine |92% -
e Apple Watch (Series 7): 24/7 data collection over 3 months (Jun. - Sept. 2024) R I - F t.
e Metrics: Steps, HR, Energy Burned, VO, Max, HRV unner njury orecas Ing
e Three IA team members e Exploratory Data Analysis insights in Fig. 6:
o Target feature imbalance: injury vs. no injury
o Low feature correlation
Public Datasets e Feature Engineering Metrics
PS Competitive Runners |njury Dataset [1]: O Training Load = Session Duration X Rate of Perceived Exertion
o 77 high-level middle and long distance runners, over seven years o Training Strain = 2 training load X training monotony References
o Objective data from GPS watch, subjective data for exertion and success of o Training Monotony = Avg. Training Load / Std. Deviation of Training Load [1]S. S. Lévdal, R. J. R. Den Hartigh, and G. Azzopardi, “Injury Prediction in Competitive Runners
. , , , . , , With Machine Learning,” International Journal of Sports Physiology and Performance, vol. 16, no.
training o Acute Chronic Workload Ratio (Fig. 4): Acute Chronic Workload / Chronic Workload 10, pp. 1522-1531, 2021, doi: https://doi.org/10.1123/ijspp.2020-0518.
e DUO-GAIT Dataset [2] e Data Preprocessed [2] L. Zhou, E. Fisher, C. M. Brahms, U. Granacher, and B. Arnrich, “DUO-GAIT: A gait dataset for
o Public Gait Dataset for walkine under Faticue and Control Conditions e walking under dual-task and fatigue conditions with inertial measurement units,” PubMed,
, 2 , .g , , o Time-series; Sequences of 7 days https://pubmed.ncbi.nlm.nih.gov/37604913/
o Provides IMU sensor data from 18 participants with 6 minute walks e Neural Network Training: Gated Recurrent Unit




